Beyond Typologies: A Multilevel Approach to Understanding the Impact of Destinations on Immigrant Outcomes.

Elizabeth Ackert eackert@uw.edu University of Washington Population Association of America Meeting, 2012

[Work in Progress. Please do not cite without author permission]

Abstract

Immigrant destination typologies are increasingly used to compare immigrant outcomes across geographic areas within the United States. Results from analyses that use destination typologies, however, are sensitive to the choice of criteria that defines destination types, as well as to variations in the geographic unit of analysis. Destination categories may also mask important sources of intra-destination variation. I argue that the study of immigrant destinations could benefit from the use of multilevel modeling. Multilevel models allow researchers to examine how the characteristics of destinations and the individuals within them produce variations in outcomes across immigrantreceiving areas. To demonstrate the utility of this approach, I use the 2005-2009 American Community Survey to examine patterns of school non-enrollment among Mexican origin 15-17 year-olds across U.S. states. My models assess how individual and state-level factors produce between-state variation in the likelihood of Mexican origin non-enrollment. I argue that this modeling technique can inform the future study of immigrant outcomes across destinations.

Introduction

What is a "new" immigrant destination? Researchers who study new immigrant destinations often conceptualize these places in a similar way, as locations that had a negligible foreign-born presence prior to the 1990s and experienced significant growth in the immigrant population thereafter. Despite this conceptual congruence, most studies of new immigrant destinations define the boundaries of new and other types of destinations differently. For instance, Singer (2004, 2008) creates a six-category destination typology for metropolitan areas that takes into account an area's historical experience as an immigrant destination, as well as recent and projected foreign-born growth rates. Her typology includes former gateways (places that received earlier waves of migrants but are no longer immigrant destinations), continuous gateways (places that have continuously received immigrants, such as New York and Chicago), Post-World War II gateways (places that became immigrant destinations after World War II), emerging gateways (places that have experienced rapid immigration in the past 25 years), re-emerging gateways (places that were major immigrant destinations in the early 20th century, followed by a hiatus in the middle of the century, and a resurgence in recent decades), and pre-emerging gateways (places that experienced rapid growth in the foreign-born population in the 1990s, and are poised to experience further growth in the future). In contrast, other studies distinguish new from established and other types of destinations based on two factors: 1) the proportion of immigrants living in a given geographic unit of analysis in a baseline year; and 2) the rate of growth in the foreign-born population in the geographic unit of analysis between the baseline year and a subsequent time period (see Fischer 2010; Lichter et al. 2010; Park and Iceland 2011).

The diversity of destination typologies in the current literature on new immigrant destinations poses a number of challenges for researchers seeking to generalize findings across studies. First, the number of destination categories typically varies across studies. Second, researchers often use a different set of criteria to define a geographic area as a new destination. As a result, the proportion of the total ethno-racial population that is reported to be living in new destinations differs across studies. This has important implications for study findings, and may be one reason why studies researching the same social phenomenon reach divergent conclusions (see, for example, Fischer and Tienda 2006, Lichter et al. 2010, and Park and Iceland 2011, on segregation levels in new destinations). Finally, destination typologies may mask intra-destination heterogeneity. By design, destination typologies categorize geographic areas together based on a common immigration history. The literature on immigrant destinations, however, reveals substantial heterogeneity among places that are commonly considered to be new destinations. The "new destinations" label may thus obscure other contextual factors that drive inter-place variation in outcomes that are used to measure immigrant incorporation.

As researchers move forward in the study of immigrant incorporation across destinations, it will become increasingly important to acknowledge the limitations of destination typologies. I argue that the field should pay greater attention to identifying the specific contextual factors that shape common or divergent outcomes among immigrants across destinations. These factors may include variables related to a destination's immigration history, but could also include other contextual factors that previous research has shown to be relevant to the outcome of interest. I posit that the literature on new destinations would benefit from the use of multilevel statistical models.

Multilevel modeling provides an understanding of how individual, household, and external factors work together to create between-destination variations in the outcome of interest. The use of multilevel modeling would allow researchers to identify the variables that generate heterogeneity in outcomes across destinations, while remaining agnostic about defining destinations as "new" or "established."

In this paper, I demonstrate the utility of a multilevel approach to understanding between-place heterogeneity in immigrant outcomes, by examining variations in the likelihood of school non-enrollment among Mexican origin 15-17 year-olds¹ across U.S. states. I use individual and household data from the 2005-2009 American Community Survey (ACS) to construct several individual-level (level 1) variables that may influence patterns of non-enrollment across states. In addition, I use a 1990 decennial census 5% microdata sample, the 2005-2009 ACS, and the 2010 ACS to create three types of state-level (level 2) variables that may explain variations in Mexican origin non-enrollment across states: immigration history, peer composition, and educational context.

I find considerable variation in Mexican origin non-enrollment rates across states. Compositional factors, particularly immigrant generational status, play a major role in explaining between-state variance in the likelihood of non-enrolment. Surprisingly, immigration history variables that are commonly used in destination typologies (the percent foreign born in the state in 1990 and percent foreign-born growth rates from 1990 to 2010) have a negligible influence on between-state variation in the likelihood of Mexican origin non-enrollment. Additionally, these variables do not have significant effects on the log odds of Mexican origin non-enrollment, net of compositional factors.

¹ I refer to 15-17 year-olds as "adolescents" throughout this analysis.

In contrast, variables related to the context of education in the state, particularly the percent of non-Hispanic White 15-17 year-olds who are not enrolled in school, reduce between-state variation in Mexican origin non-enrollment. The likelihood of non-enrollment also increases significantly as the percent of non-enrolled NH Whites in the state increases, net of the compositional factors. These results suggest that researchers should proceed with caution when assuming that immigration history plays an all-important role in shaping heterogeneous outcomes across destinations.

Background

Prior to the 1990s, immigrant settlement in the United States followed a predictable geographic pattern, with the majority of immigrants settling in urban areas in a handful of immigrant-receiving states. Portes and Rumbaut (2006) note that this consistent spatial pattern was largely the result of the "characteristic economics of immigration," in which immigrants were drawn by co-ethnic recruitment into entry level or low-skilled jobs in urban areas undergoing economic growth (58-59). This pattern began to shift in the last decades of the 20th century, with increasing numbers of immigrants settling outside of established gateways, in "new destinations" such as Marshalltown, Iowa and Dalton, Georgia (Zúñiga and Hernández-León 2005). A number of factors have helped to "push" immigrant origin populations out of established gateways and "pull" them into new destinations, including comprehensive immigration reform in the 1980s, nativist hostility in established gateways such as California, border control policies that have inadvertently increased immigrant settlement by raising the cost of circular migration, and industrial relocation and restructuring in sectors that involve

manual labor, such as meatpacking (Massey and Capoferro 2008; Parrado and Kandel 2008).

Mexican origin immigrants account for a sizeable proportion of the foreign-born population living in non-established destinations. In 2005, approximately 30 percent of all recent Mexican immigrant arrivals (individuals who entered the country in the previous five years) were living outside of the "Big Five" states of immigration (California, Texas, Florida, Illinois, New York), nearly double the percentage of Mexican origin new arrivals that resided outside of these states in 1990 (Massey and Capoferro 2008: 40). Recent immigrant arrivals from other regions, including Asia and Other (non-Mexican) Latin American countries have also been drawn into areas outside of the Big Five established gateway states (Massey and Capoferro 2008).

The emergence of new immigrant destinations has coincided with a proliferation of studies that seek to incorporate new destinations into the broader fold of theories of immigration and assimilation. I conceptualize the previous research on immigrants in new destinations as proceeding in two waves.² The first wave of research focused on describing the emergence of new destinations and generating explanations for these changing patterns of immigrant settlement. In addition, studies in the first phase of research sought to understand the dynamics of incorporation for immigrants in new destinations by addressing such questions as "who immigrates to new destinations?" and "how are these immigrants received?" Studies in two edited volumes, Zúñiga and Hernández-León's *New Destinations: Mexican Immigration in the United States* (2005) and Douglas Massey's *New Faces in New Places* (2008), typify this wave of research.

² These waves of research are not necessarily chronologically distinct. In dividing the previous research on new destinations into these two waves, I seek to highlight differences in content and methodological approach, rather than differences in timing.

These volumes include both quantitative and qualitative studies, with many studies taking a localized approach to understanding immigrant destinations. To be sure, most of the research in these two volumes focuses on specific new destination communities, such as Marshalltown, Iowa (Grey and Woodrick 2008) or particular new destination industries such as meatpacking and construction (Parrado and Kandel 2008).

Importantly, the first wave of research on new destinations has shown that, compared to established urban immigrant gateways, new destinations are extremely diverse. New destinations include suburban areas (Hardwick 2008), nonmetropolitan "offset" counties—places where the immigrant population has offset the decline of the native-born population (Donato et al. 2008), and nonmetropolitan areas that were previously dominated by non-Hispanic whites (Kandel and Cromartie 2004). In addition, urban places that have been historical gateways for some immigrant groups have become new destinations for others. For instance, Mexican origin immigrants have recently begun to settle in New York City (Smith 2006), a quintessential established immigrant gateway.

The second wave of research on immigrants in new destinations is largely comparative and inferential. In this phase of inquiry, researchers often use large, nationally representative datasets and multivariate analysis to compare immigrant outcomes across new versus other types of destinations, and examine the determinants of these variations. This wave of research is partly a response to Waters and Jiménez's (2005) call for new destinations to be integrated into theories of immigrant assimilation. Many studies in this phase of research compare outcomes related to immigrant asimilation, such as segregation (Fischer and Tienda 2006; Lichter et al. 2010; Park and

Iceland 2011) and school non-enrollment (Fischer 2010), across destinations. This wave of research is particularly concerned with determining whether new destinations contribute positively or negatively to immigrant outcomes compared to other types of destinations, net of compositional factors. For instance, a recent study by Fischer (2010) compares school non-enrollment rates among 15-17 year-old across four types of destinations (new, established maintaining, established growing, and non-destinations), and assesses whether these differences persist when compositional factors related to social origins are taken into account. She finds that the likelihood of non-enrollment is persistently higher for 15-17 year-olds in new destinations than in established maintaining destinations, net of compositional factors.

This wave of research is dominated by the use of destination typologies that use a given set of criteria to define the boundaries of new versus other types of destinations. As discussed, many researchers conceptualize new destinations similarly, viewing them as places that had a negligible foreign-born presence prior to a baseline time period and experienced rapid foreign-born growth thereafter. In practice, however, researchers do not measure new destinations in the same way. The number of destination categories within a typology may vary across studies. For instance, while Singer (2004) uses a six-category typology to describe the immigration history of metropolitan areas, a recent study of non-enrollment across destinations, establishing maintaining destinations), and two other recent studies of segregation across destinations (Lichter et al. 2010; Park and Iceland 2011) use three categories (new destinations, established destinations, and "other" types of destinations).

Studies that use a similar number of destination categories may also measure destinations differently. To provide an example, I compare the destination typologies used in three recent studies of differences in Hispanic segregation levels across destinations in 1990 and 2000 (Fischer and Tienda 2006; Lichter et al. 2010; Park and Iceland 2011).³ Fischer and Tienda (2006) analyze the top 100 metropolitan areas, and divide these areas into three categories: Traditional metros, new Hispanic destinations, and other large metros. Traditional metros are defined as the 29 metro areas in the Southwestern states (Texas, New Mexico, Colorado, Arizona, and California) and the established gateway cities of Miami, New York City (including Newark, NJ), and Chicago. New Hispanic destinations include 50 metropolitan areas that cannot be defined as traditional metros and where the Hispanic population increased "appreciably" from 1980 to 2000 (2006:103). Fischer and Tienda do not provide a clear cut-off point to distinguish new Hispanic destinations from other large metros, but note that the percent foreign-born within new Hispanic destinations doubled, from 6 to 12 percent, from 1980 to 2000. Other large metros include the remaining 21 metropolitan areas that had less than a 5 percent Hispanic population in all years of the analysis (1980, 1990, 2000).

Similar to Fischer and Tienda, Park and Iceland (2011) limit their analysis to the top 150 metropolitan areas. Park and Iceland seek to consolidate Singer's (2004, 2008) typology into three categories: Established gateways, new destinations, and other gateways. They define established gateways as places where the proportion of foreign-born individuals within the metropolitan area was greater than the national average proportion of foreign-born individuals for each decade of the 20th century, or where the

³ Fischer and Tienda (2006) also examine segregation patterns in 1980.

proportion of foreign-born individuals exceeded the national average after World War II. New destinations are defined as non-established gateways that had small foreign-born populations prior to1970 and growing foreign-born proportions after 1980. Similar to Fischer and Tienda (2006), Park and Iceland do not provide a clear cut-off point for distinguishing new destinations from other gateways. Other gateways are considered metropolitan areas that cannot be defined as either established gateways or new destinations.

In contrast to Fischer and Tienda, and Park and Iceland, Lichter et al. (2010) define destinations at a lower level of geography-- the "place" level. The universe of places includes metro central cities, metro suburban places, and non-metropolitan places (n=21,093). An advantage to this approach is that it includes non-metropolitan areas, which account for some of the growth of new immigrant destinations (Kandel and Cromartie 2004). Lichter et al. do not use data on the size and growth of the total foreign-born population to categorize destinations, but focus exclusively on the size and growth of the Hispanic population. Established places are defined as places where Hispanics represented 18 percent or more of total population in 1990 (double the overall proportion of Hispanic individuals living in the U.S. in 1990). Places must meet three criteria to be defined as new destinations: 1) The proportion of Hispanics living in the place had to be lower than the national average in 1990 (9 percent); 2) The total Hispanic population had to have grown by at least 200 individuals from 1990 to 2000; 3) The Hispanic growth rate from 1990 to 2000 had to exceed the national average by one standard deviation. "Other" Hispanic places are those that cannot be considered established places or new destinations.

Inconsistencies in the geographic unit of analysis and the criteria used to define destinations in these three studies make it difficult to compare findings across studies. In addition, variations in the measurement of new, established, and "other" destinations imply that different proportions of the Hispanic population are reported to be living in places that are considered to be new destinations. In Fischer and Tienda's (2006) analysis, for example, approximately 16 percent of all Hispanics living in metropolitan areas are living in new destinations, whereas Park and Iceland (2011) report that 26.4 percent of all Hispanics are living in new destinations. In Lichter et al.'s (2010) analysis, only 1.2 percent of all Hispanics in 2000 were living in places they define as new destinations. As a result, each of these analyses is referring to different subgroups within the Hispanic population using the same nomenclature— "new destinations."

Variations in destination typologies may also help to explain why these studies reach divergent conclusions. Lichter et al. (2010) find that Hispanic-white segregation is higher in new destination places than in established destination places, whereas Fischer and Tienda (2006) and Park and Iceland (2011) find that Hispanic-white segregation in metro new destinations is generally lower than in established metros. These conflicting results could also be due to variations in the geographic unit of analysis. Findings from studies that use distinct destination typologies will thus always be sensitive to both the geographic unit of analysis and the criteria used to distinguish new from established and other types of destinations.

Beyond measurement concerns, an over-reliance on destination typologies could overshadow intra-destination heterogeneity. By design, destination typologies emphasize between-group differences (new versus established destinations) rather than within-group

differences (intra-group variation in new destinations, for example). As discussed, new destinations are diverse on several measures, including metropolitan status and the types of populations that lived in the destination prior to the arrival of immigrants. Current studies are beginning to quantify this variation. In their analysis of segregation patterns across destinations, for example, Fischer and Tienda (2006) note that the average level of segregation for the entire population of new destination metropolitan areas masks substantial variation in segregation levels across new destination metros. They attribute this variation to differences in size, pre-existing minority populations, and the timing of the arrival of Hispanics.

A destination's immigration history may not be a major determinant of certain outcomes related to immigrant assimilation. For instance, the factors that shape segregation in Atlanta, Georgia, may not be the same as those that influence segregation in Lincoln, Nebraska, despite the fact that these areas are both considered new destinations (see Park and Iceland 2011: 816). It may not necessarily be the "newness" of a destination that matters for immigrant outcomes, but rather the institutional arrangements that are found within the destination (Waters and Jiménez 2005). As research on immigrants in new destinations proceeds, it will be increasingly important to recognize sources of heterogeneity within new destinations, rather than solely focus on comparisons between new and established destinations.

Approach

I argue that the literature on ethno-racial differences across destinations would benefit from the use of multilevel statistical models. These models can be used for data that exhibits a hierarchical structure, where one unit of analysis (individuals, for example)

is nested in another unit of analysis (states, for example). Multilevel modeling can allow researchers to examine the factors that produce variation in immigrant outcomes across destinations, without defining destinations as new or established at the beginning of the analysis. I argue that the use of multilevel modeling would benefit the study of immigrants in new and other types of destinations in two ways. First, multilevel models allow researchers to refrain from defining destinations discretely as "new" or "established." This ensures that results are not sensitive to the criteria used to establish destination categories. Second, multilevel models allow researchers to examine how level 1 and level 2 factors influence variation in immigrant outcomes across destinations. These models can help researchers to determine whether variations in outcomes across destinations are due to compositional factors (individual and household characteristics) or contextual factors, such as a place's immigration history. In sum, multilevel models can help researchers to gauge the extent to which a destination's immigration history matters for a given outcome, compared to compositional factors and other contextual attributes.

In this analysis, I demonstrate the utility of a multilevel approach by analyzing patterns of school non-enrollment among Mexican origin 15-17 year-olds across U.S. states. I run a series of multilevel models where Mexican origin adolescents (level 1 unit of analysis) are nested in 50 states and the District of Columbia (level 2 unit of analysis). In these models, the intercept is allowed to vary by state. This produces a variance term for the intercept, which represents the overall between-state variance in the log odds of Mexican origin non-enrollment. The models also estimate random effects parameters for each state, which represent the state's deviation from the overall mean of the states' mean log odds of non-enrollment. These models thus quantify levels of variation in Mexican

origin non-enrollment across states and identify states where Mexican origin adolescents have higher or lower than average probabilities of non-enrollment. In addition, covariates that produce changes in the variance of the intercept and the state random effects parameters provide information about the factors that drive variation in Mexican origin non-enrollment across states. As I will demonstrate, multilevel models shed light on the relative importance of individual background factors (immigrant generation, parental education, family status) and state-level factors (immigration history, peer composition, educational context) in shaping between-state differences in patterns of Mexican origin non-enrollment.

Data

For the analysis presented here, I use the individual and household records of 15-17 year-olds in the 2005-2009 American Community Survey (ACS), from the Integrated Public Use Microdata Series (Ruggles et al. 2010). I also create a file of state-level variables, using three datasets from IPUMS: the 1990 decennial census 5% state microdata sample (weighted), the 2010 ACS (1% probability sample, weighted), and the 2005-2009 ACS (an aggregate of five 1% probability samples from 2005-2009, weighted). To construct the sample for analysis, I extract the data records of all 15-17 year-olds in the 2005-2009 ACS. For 15-17 year-olds who live with one or two parents in the household, I merge the parental data record/s with the individual 15-17 year-old data record. For 15-17 year-olds who do not live with a parent in the household, I use the householder record as a proxy for the parental record.

A group of 15-17 year-olds does not live with parents and does not have an available householder record. This group includes individuals in group quarters (such as

institutional inmates) and individuals who are the householder (i.e. the individual who filled out the survey). During the household record matching process, individuals who live in institutional group quarters are dropped from the analysis. Individuals who consider themselves the householder are included and the analysis, and are flagged using dummy variables in the analysis.

The final sample of non-institutionalized 15-17 year-olds in the 2005-2009 ACS includes 637,103 cases. Approximately 65.3 percent of 15-17 year-olds in the final sample are matched with both a mother and father record (both mother and father are located in the household), 22.2 percent are matched with a mother record, 6.1 percent are matched with a householder record (no mother or father is present in the household), and .3 percent are not matched with a parental or householder record (no mother or father is present in the household).

For the multi-level analysis, I examine variation in school non-enrollment across states only for the Mexican origin 15-17 year-old population. A subject is identified as Mexican origin if he/she meets one or more the following criteria: 1) The subject was born in Mexico; 2) At least one of the subject's parents was born in Mexico; 3) The subject is identified as "Hispanic- Mexican" on the Hispanic origin question. Among the final 15-17 year-old sample in the 2005-2009 ACS, I identify approximately 71,269 subjects as adolescents of Mexican origin (11.2 percent of all 15-17 year-old cases). For some portions of the analysis, I create a subset of Non-Hispanic White (NH White) and Non-Hispanic Black (NH Black) 15-17 year-olds. There are approximately 357,701 NH White 15-17 year-old subjects in the 2005-2009 ACS dataset (70.6 percent of all 15-17

year-olds), and 66,438 NH Black 15-17 year-old subjects (13.11 percent of all 15-17 year-olds).

Variables

Individual-Level Variables (Level 1 Variables)

In the descriptive and multilevel analysis, I examine several individual-level variables that have been shown to predict levels of school non-enrollment and other educational outcomes. Immigrant generational status is a central variable in this study. As Rumbaut (2004) describes, immigrant generational categories indicate the degree of removal between those who engage in the act of migration and their descendants. Generational groups also encapsulate the degree of exposure that individuals have had to the receiving society and its institutions. In this analysis, I use an approximation of Rumbaut's (2004) typology to classify the Mexican origin population into four categories by nativity and age at arrival: The 1.25 generation, 1.5 generation, 1.75 generation, and the native-born, or second and higher generations. Hirschman (2001) finds a difference in the likelihood of school non-enrollment among foreign-born immigrant adolescents by age of arrival, which further justifies the use of Rumbaut's typology.

The 1.25 generation includes those who migrated after the age of 12-- the most recent arrivals. As several researchers note (Hirschman 2001; Oropesa and Landale 2009), some recent arrivals that are not enrolled in school may be labor migrants who never enroll in school in the United States. The 1.5 generation includes individuals who arrived between the ages of 6 and 12, and likely had some schooling in Mexico. These individuals will not face the same number of obstacles to integration as new arrivals, but may still experience problems due to the discontinuities associated with attending school

in two different countries. The 1.75 generation are adolescents who arrived in the United States by the age of five. The 1.75 generation should be more integrated into the United States school system than the 1.5 and 1.25 generations, given that they have spent the majority of their school-aged lives in the United States. For this reason, the 1.75 generation is often considered comparable to the immigrant second generation (see, for example, Perlmann 2005, and Kasinitz et al. 2008).

The elimination of the parental birthplace question from the decennial census in 1980 makes it difficult for researchers to differentiate the immigrant second generation from the third and higher generations in census data (Hirschman 1994). This problem is not resolved in the ACS, which does include a parental birthplace question. The parental record matching technique described above helps me to identify parental birthplace in my analysis, but only for the subset of adolescents that are living with at least one parent. Thus, I cannot accurately identify the immigrant generational status of native-born Mexican origin individuals who do not live with either parent, or who live in singleparent households where the parent living in the household is native-born and the parent living outside the household is foreign-born. For this reason, I classify all second and higher generation immigrants together as native-born. I also identify non-citizens, who are foreign-born individuals that lack citizenship status, were not born abroad to American parents, and have not been naturalized. In multilevel logistic regressions, I do not control for citizenship status, because it is highly correlated with immigrant generational status. Approximately 93.5 percent of 1.25 generation Mexican origin adolescents are non-citizens, and 88.4 and 78.4 percent, respectively, of 1.5 and 1.75 generation Mexican origin adolescents are non-citizens.

Family structure is a powerful predictor of educational non-enrollment. Previous studies show that living in a single-parent family exerts a significant, negative impact on educational enrollment and high school completion (McLanahan 1985; Sandefur, McLanahan, and Wojtkiewicz 1992; Landale, Oropesa, and Llanes 1998; Hirschman 2001). For the Hispanic population, living in a single parent or stepparent family increases the odds of high school dropout or failure to complete a high school degree relative to individuals in two-parent family structures (Wojtkiewicz and Donato 1995; Landale, Oropesa, and Llanes 1998; Perreira, Harris, and Lee 2006).⁴ For this analysis, I classify families as intact (two parents in the household), mother only, father only, or no parents present. I do not explore stepparent effects.

Status attainment models developed in the 1960s and 1970s showed that socioeconomic origins, including parental educational attainment, had direct and indirect effects on children's adult educational attainment and occupational status (Blau and Duncan 1967; Duncan, Featherman, and Duncan 1972; Sewell and Hauser 1972). Kao and Thompson (2003) note that the socio-economic status of a student's family of origin continues to be highly predictive of white-nonwhite differences in educational outcomes such as school dropout. In specific studies of the Mexican origin population, parental educational attainment also exerts a major influence the educational outcomes of Mexican origin children (Landale, Oropesa, and Llanes 1998; Wojtkiewicz and Donato 1995; Zsembik and Llanes 1996).

⁴ Perreira, Harris, and Lee (2006) observe no significant difference in the likelihood of high school completion between individuals in single mother households and those in two-parent households, but a significant, negative difference in the odds of high school completion between individuals in single father households and those in two-parent households.

In this analysis, I use parental educational attainment and poverty status as proxies for social origins. I collapse parental educational attainment into five levels: less than high school graduate (less than h.s.), high school degree or GED, some college, A.A. degree, and B.A. degree or higher. I also include a dummy variable to identify students who lack parental educational information because they do no have a parental or householder record. For individuals in intact households, I use the educational attainment level of the parent with the highest level of education.⁵ For single-parent households, I use the level of educational attainment of the parent who is living in the household (mother or father). Finally, for individuals who do not live with parents, I use the level of educational attainment of the householder.

I use the poverty variable from the ACS dataset as a broad measure of household resources. The ACS poverty variable incorporates information on total family income, family size, number of children, and householder age to determine whether a family's poverty level is higher or lower than 100 percent of the poverty thresholds established by the Social Security Administration. I will demonstrate that, in multilevel logistic regression models, poverty has a negligible effect on non-enrollment, net of parental education. Thus, my conclusions are robust to the exclusion of the poverty variable from these models. I use the ACS poverty variable to classify families as living at three

⁵ In a previous analysis (presented at the 2011 PAA Meeting, available upon request), I used the Bayesian Information Criterion (BIC) value for three logistic regression models regressing Mexican origin nonenrollment on parental education to determine which level of parental education to use for intact households (mother's versus father's). The BIC offers a means to assess model fit by incorporating information on the deviance (the likelihood ratio test statistic), the number of parameters in the model, and the sample size (see Raftery 1995: 133-136). Hauser (1995) has also advocated the use of the BIC as an important model selection tool in sociological research. I found that using the highest parental education level (for children in intact households) yielded the lowest BIC, and thus provided the best model fit for assessing the likelihood of school non-enrollment.

economic levels: below the poverty threshold (value on the poverty variable is less than 100 percent), one to two times the poverty threshold (poverty value is 100 to 200 percent of the threshold), or over two times the poverty threshold (poverty value is over 200 percent of the poverty threshold).

Student mobility is a major predictor of school dropout (Rumberger 2004). Student mobility contributes to school non-enrollment by destabilizing continuity in a student's schooling experience. The ACS provides information on whether the individual is residing in a place of residence that differs from their place of residence one year prior to the survey year (i.e. 1-year migration status). Using this information, I create a variable called "mobility" that captures three types of 1-year migration statuses: Intrastate migration, inter-state migration, and international migration. This measure is imperfect, because it does not differentiate types of within-state migration (intra- versus inter-metropolitan migration, inter-district migration, etc.) Still, this variable identifies individuals who have likely recently arrived in a new educational context.

Finally, I control for metropolitan status as if it were an individual-level predictor in the multilevel models (rather than a state-level predictor). I control for central city status, non-metropolitan status, and "other" metropolitan status (metropolitan status not identifiable, metropolitan- outside central city, and metropolitan- central city status unknown). The barriers that the central city imposes on the educational success of the children of immigrants are well documented, and include bifurcated labor markets, exposure to oppositional subcultures or gangs, and segregation in low quality schools (Kasinitz et al. 2008; Portes and Rumbaut 2001; Portes and Zhou 1993; Zhou 1997a; Zhou 1997b; Smith 2006). As discussed, Latinos are increasingly living outside of the

central city, in both suburban and non-metropolitan areas (Hardwick 2008; Kandel and Cromartie 2004). Data on the effects of non-metropolitan status on school nonenrollment are mixed (see Reeves and Bylund's 2005; Rumberger and Palardy 2005). Case studies of rural new immigrant destinations, however, suggest that rural areas may lack the necessary resources to meet the specific linguistic and educational needs of newly arrived immigrant children (Gouveia, Carranza, and Cogua 2005). Thus, it is important to control for non-metropolitan status in the models.

State-level Variables (Level 2 Variables)

After controlling for individual-level variables that could potentially influence school non-enrollment differences across states (compositional factors), I introduce several state-level variables into the multilevel models. I divide state-level variables into three groups: Immigration history, peer composition, and educational context. Ideally, I would use a range of variables to measure these constructs. In practice, however, many state-level variables are highly correlated. For instance, the baseline foreign-born population in the state in 1990 and the state's foreign-born growth rate (immigration history variables) are highly correlated with the percent of NH White peers (15-17 yearolds) living in the state. Thus, the composition of the population within the state is highly influenced by patterns of migration into the state. Similarly, the percent of NH Black peers (15-17 year-olds) living in the state (a potential peer composition variable) is highly correlated with the percent of adults in the state who do not have a high school degree (a potential educational context variable). This multicollinearity leads to highly inflated standard errors in the multilevel models. For this reason, I only control for five state-

level variables that are intended to represent immigration history, peer composition, and educational context.

Immigration history variables include the two standard covariates that are utilized to create destination typologies— foreign-born presence in a baseline year and foreign-born growth rates between the baseline year and a subsequent time period. I calculate the total and percent foreign-born individuals for each state (all ages) in 1990, using data from the 5% decennial census microdata file. I then calculate the total and percent foreign-born population (all ages) in 2010, using the 2010 ACS. Finally, I calculate foreign-born growth rates (percent) from 1990 to 2010. The inclusion of variables representing a state's immigration history should reduce between-state variance in the log odds of non-enrollment among Mexican origin adolescents. To the extent that living in a new versus an established destination affects the probability of Mexican origin non-enrollment, I should observe two types of results. First, the addition of immigration history variables should reduce between-state variance in the likelihood of non-enrollment, net of compositional factors. Second, these coefficients should be significant predictors of Mexican origin non-enrollment, net of compositional factors.

As discussed, recent work by Fischer (2010) finds that the likelihood of school non-enrollment is greater for 15-17 year-olds living in new destinations than for those living in established maintaining destinations. To the extent that Fischer's findings are generalizable to this study, the signs of the coefficients should reflect an established destination advantage. The log odds coefficient for the percent foreign-born in 1990 should have a negative sign, indicating that increases in the percentage of foreign-born individuals living in the state in 1990 (i.e. established destinations) are associated with

lower log odds of non-enrollment. Conversely, the sign for the log odds coefficient for foreign-born growth rates between 1990 and 2010 should be positive, which would imply that increases in the foreign-born growth rate increase the likelihood of Mexican origin school non-enrollment.

Previous research on new immigrant destinations hypothesizes that variations in the institutional arrangements within destinations could differentially shape immigrant outcomes related to assimilation (Waters and Jiménez 2005). As discussed, researchers are only beginning to understand how contextual factors shape immigrant outcomes across destinations, with varying results. This poses difficulties for the identification of other state-level variables that might influence variation in Mexican origin school nonenrollment across states beyond immigration history. Nonetheless, I focus on two other sets of state characteristics that could hypothetically influence school non-enrollment patterns across states—peer composition and educational context.

The first variable represents minority peer composition. I calculate the percentage of NH Black 15-17 year-olds living in each state, using the 2005-2009 ACS. I hypothesize that Mexican origin adolescents living in states with higher percentages of NH Black peers may have a greater likelihood of school non-enrollment, because they may be competing with these students for resources that support minority education. Additionally, the high correlation between the percent of NH Black adolescents in the state and the percentage of adults (ages 25-64) in the state that lack a high school degree (.63, author's calculations; correlation matrix available upon request) means that the percent of NH Black peers in the state may also be a proxy for the overall quality of the educational context for minorities within the state.

The next set of variables tries to capture the context of high school dropout within each state. I calculate the percentage of NH White and NH Black 15-17 year-olds that are not enrolled in school for each state, using the 2005-2009 ACS. The basic hypothesis is that the overall quality of the state education system is likely to affect everyone living in the state. Poor quality education systems should produce higher rates of nonenrollment among all subgroups. Thus, increases in the percent of NH White and NH Black peers who drop out of school within the state should increase the likelihood of school non-enrollment among Mexican origin 15-17 year-olds.

Analytical Strategy

I begin the analysis by quantifying state-level variations in the distribution of Mexican origin adolescents across and within states (Table 1). I then analyze the dependent variable of interest—school non-enrollment. I first examine levels of school non-enrollment among Mexican origin, NH White, and NH Black adolescents across states (Table 2). In the ACS, school enrollment status is reported for each person in the household by the householder—the individual who fills out the survey. Individuals who are not enrolled in school at the time of the ACS survey could be considered dropouts. However, it is possible that these individuals may return to school at a future point in time. Thus, non-enrollment at ages 15-17 should not be considered a permanent dropout status. I also calculate the overall means of the individual-level variables for the Mexican origin, NH White, and NH Black populations, as well as several state-level characteristics. These results are displayed in the Appendix, Tables 1 and 2. I use person-level weights in the calculations of all descriptive statistics.

In the multivariate portion of the analysis, I run a series of stepwise multilevel logistic regression models, with school non-enrollment (y=1) as the binary outcome. I run all models in Stata 12.0, then repeat the analysis using R software to create the state random effects figures displayed in the Findings section. I do not use weights in the multilevel regression analysis. The multilevel logistic regression models in this analysis allow the intercept of the log odds of Mexican origin non-enrollment to vary by state. The baseline model is as follows:

$$\log it(P[Y_{non-enroll} = 1]) = \alpha_{j[i]} + \beta_{age} * age_i + \beta_{sex} * sex_i, i = 1..., n_{age}$$

$$\alpha_{j[i]} \sim N(\mu_{\alpha}, \sigma^{2}_{state}), j = 1, \dots 51$$

The baseline model includes controls for age and sex. Of particular interest in this and subsequent models is σ^2_{state} , the between-state variance in the log odds of Mexican origin non-enrollment. For each model, I display the random effects parameters for each state, which represent state differences from the overall mean of the state means of the log odds of Mexican origin non-enrollment. To the extent that individual and state-level attributes explain between-state differences in the likelihood of Mexican origin non-enrollment, this parameter should decrease in magnitude as covariates are added to the models. I next add a series of individual-level (level 1) covariates to the baseline model: $\log it(P[Y_{non-enroll} = 1]) = \alpha_{j[i]} + \beta_{age} * age_i + \beta_{sex} * sex_i + B_{level} * level_{i}, i = 1...n$

$$\alpha_{j[i]} \sim N(\mu_{\alpha}, \sigma^2_{state}), j = 1, \dots 51$$

Next, I add the state-level covariates to the model controlling for all individual-level covariates:

$$\log it(P[Y_{non-enroll} = 1]) = \alpha_{j[i]} + \beta_{age} * age_i + \beta_{sex} * sex_i + B_{level1} * level1_i + B_{level2} * level2_{ij}, i = 1...n_{ij}$$
$$\alpha_{j[i]} \sim N(\mu_{\alpha}, \sigma^2_{state}), j = 1, ...51$$

State-level covariates that reduce the between-state variance in the likelihood of nonenrollment (σ^2_{state}), net of individual-level factors, provide information about the attributes of destinations that shape patterns of non-enrollment across states.

Findings

State-level distributions of Mexican origin adolescents

Table 1 displays the distribution of Mexican origin 15-17 year-olds across states, as well as the percentage of 15-17 year-olds of Mexican origin adolescents within states. Despite the emergence of new destinations, California and Texas remain major areas of settlement for the Mexican origin population. The majority of all Mexican origin adolescents (64.4 percent) live in California and Texas. A noticeable share (13.1 percent) of the Mexican origin population also lives in the established Mexican origin gateways of Arizona, Illinois, and Colorado. A number of states individually receive only 1-2 percent of all Mexican origin 15-17 year-olds, but these states cumulatively receive 12.5 percent of all Mexican origin adolescents. These states are spread across regions of the U.S., and include Washington, New Mexico, Nevada, Florida, Georgia, Oregon, New York, North Carolina, and Michigan. Finally, the remaining 10 percent of all Mexican origin 15-17 year-olds are dispersed across 37 states and the District of Columbia. These distributions show that established patterns of Mexican origin settlement prevail. Most 15-17 yearolds of Mexican origin live in the Southwestern states and Illinois. However, consonant with the new destinations literature, a noticeable share (around 22.5 percent) of Mexican origin adolescents live outside of these established gateway areas.

The between-state and within-state distributions of Mexican origin 15-17 yearolds are highly correlated (.75). States that attract a greater share of the total Mexican origin 15-17 year-old population also tend to have higher than average proportions of Mexican origin adolescents living within the state. Over 30 percent of all 15-17 yearolds in California, Texas, and Arizona, are adolescents of Mexican origin. A large proportion of 15-17 year-olds living in New Mexico and Nevada (approximately 26 percent and 31 percent, respectively) are of Mexican origin.

Importantly, in some states that receive smaller shares of all Mexican origin adolescents (less than 5% each), Mexican origin adolescents make up a noticeable proportion of all 15-17 year-olds within the state. This speaks to the state-level impact of the geographic dispersion of immigrants. For instance, even though only .7 percent of all Mexican origin 15-17 year-olds live in Kansas, nearly 1 in 10 adolescents in the state of Kansas is of Mexican origin. Additionally, while many states have relatively small proportions of Mexican origin adolescents, it is important to remember that these individuals are unlikely to be distributed randomly throughout the state. In other words, state-level distributions may mask uneven concentrations of Mexican origin adolescents at lower levels of geography within the state.

Table 1. Between and Within-State Distributions of Mexican Origin 15-17 Year-olds(Ordered), 2005-2009 ACS.

	Percent Mexican		Percent Mexican
State	Origin Across States	State	Origin Within States
Californ a	39.90	Californ a	38.84
Texas	24.47	Texas	36.74
Arizona	5.95	Arizona	35.11
ll nois	4.92	New Mexico	31.25
Colpirado	2.24	Nevada	25.74
Washington	1.80	Colorado	17.97
New Mexico	1.72	l I nois	14.23
Nevaca	1.71	Idano	11.98
Florida	1.68	Oregon	11.85
Georeia	1.30	Wash riston	10.56
Dregon	1.13	Utan	9.38
New York	1 10	Kansas	-9.72
North Carol na	1.06	Oklahoma	8
Michigan	1.00	Nehrecke	77
Oklahoma	0.77	Wonmine	6,72
inc inc	0.75	Arkenses	5.19
i isianz Daa	0.73	Geomia	
Vaprar	0.74	Narth Carol ca	-1.56
Nd 12d S	0.02	North Caronna Managata	4.0
w sconsin	0.65	W SCONSIN	4.59
Idaho	0.51	Indiane Deles ese	-4.30
IVI 11850ta	0.46	Delaware	4.01
Unio	0.41	Iowa	5.95
NewJersey	0.44	Florida	3.75
Missouri	0.41	Michigan	3.62
Tehnessee	0.40	Alaska	3.49
Arkansas	0.39	Minnesota	3.4
Nebreska	0.37	Hawaii	2.94
Virginia	0.35	South Dakota	2.8/1
lowa	0.31	Missouri	2.55
Pennsylvania	0.27	Tennessee	2.52
South Caroline	0.26	Montaha	2.44
Alabeme	0.24	South Carolina	2.2
Kentucky	0.19	New York	2.17
Maryland	0.19	Alabama	1.94
Louisiana	0.16	New Jersey	1.92
Connecticut	0.14	North Dakota	1.89
Massachusetts	0.13	Virginia	1.78
Mississ pp	0.10	Kentucky	1.75
Hawaii	0.09	District of Columbia	1.55
Delaware	0.09	Connecticut	1.5
Wyoming	0.08	Ohio	1.42
Alaska	0.07	Louisiana	1.31
Montana	0.06	Mississ pp	1.24
South Dakota	0.06	Maryland	1.22
West Virginia	0.05	West Virginia	1.06
North Dakota	0.03	Pennsylvania	0.81
New Hamosh re	0.03	New Hamosh re	0.78
District of Columbia	0.02	Massachusetts	0.77
Rhode Island	0.02	Rhode Island	0.62
Maine	0.01	Vermont	0.42
Varmont	0.01	Maine	0.41
Total	100.00		are "Talk

Non-enrollment patterns across states

Consistent with previous analyses, the 2005-2009 ACS data show that Mexican origin adolescents have higher than average non-enrollment rates compared to their peers. Approximately 6.7 percent of all Mexican origin 15-17 year-olds are not enrolled in school, compared to 3.5 percent of all NH White 15-17 year-olds and 4.3 percent of all NH Black 15-17 year-olds. Table 2 displays school non-enrollment rates for each of these groups by state. There is considerable variation in rates of school non-enrollment among Mexican origin adolescents across states, ranging from negligible levels of non-enrollment in states with very small Mexican origin populations, such as Maine and New Hampshire, to 28.1 percent non-enrollment in Alabama. Non-enrollment rates among NH Whites and NH Blacks also vary by state, but to a lesser degree. In fact, the standard deviation for the overall non-enrollment rate for Mexican origin adolescents is higher than the standard deviations of non-enrollment for the NH White and NH Black populations, indicating that this population has a more variable distribution of non-enrollment.

The non-enrollment rate among Mexican origin adolescents in California is 4.3 percent, which is lower than the average for the total Mexican origin 15-17 year-old population. This is surprising, given the emphasis in the previous literature on a trend towards downward assimilation among some Mexican origin adolescents in major immigrant gateways in California, such as San Diego (Portes and Rumbaut 2001). In Texas, the Mexican origin non-enrollment rate is 6.2 percent, just slightly lower than the average level of Mexican origin non-enrollment.

Table 2. Percent School Non-Enrollment Among Mexican	Origin, Non-Hispanic
White, and Non-Hispanic Black 15-17 Year-olds, by State,	2005-2009 ACS.

State	Percent	Pop. Total	п	Percent	Pop. Total	п	Percent	Pop. Total	п
Alabama	28.1	3,779	153	4.6	122,475	6,524	4.2	61,258	2,751
Alaska	7.3	1,153	59	4.7	19,086	835	11.8	1,046	43
Arizona	7.4	93,795	4,154	4.8	127,250	5,406	3.9	11,184	447
Arkansas	16.8	6,175	312	5.6	83,543	4,312	4.6	23,342	967
California	4.3	629,149	28,723	2.4	555,252	28,778	2.8	111,477	4,361
Colorado	11.2	35,320	1,569	3.8	128,992	6,929	4.1	9,019	342
Connecticut	5.0	2,240	95	2.2	102,087	5,416	5.2	16,874	672
Delaware	16.8	1,438	51	4.3	22,258	1,084	3.5	9,261	333
District of Columbia	0.0	29-1	10	0.0	2,069	107	6.3	14,443	655
Florida	16.3	26,457	1,269	4.7	373,321	19,087	4.6	1/13,008	6,138
Georgia	16.1	20,487	827	3.9	216,332	11,352	4.4	145,627	5,428
Hawaii	1.4	1,447	78	5.8	7,783	367	4.6	1,032	22
idaho	11.4	8,028	375	3.7	54,915	2,957	4.8	294	15
ilinois	6.0	77,592	3,128	2.4	322,275	18,460	4.3	100,703	3,669
Indiana	7.7	11,792	529	4.1	218,196	11,762	5.3	27,626	1,089
lowa	6.1	4,889	219	3.5	109,628	5,825	2.3	3,759	117
Kansas	8.4	10,814	465	2.7	90,946	5,032	5.2	7,844	316
Kentucky	16.2	3,014	111	4.4	147,776	7,698	4.5	15,505	694
Louisiana	12. 2	2,536	191	4.7	106,223	5,540	5.3	74,687	3,025
Maine	0.0	222	17	4.2	50,217	2,374	10.3	835	26
Maryland	8.4	2,945	180	4.0	130,186	7,222	4.1	78,978	3,175
Massachusetts	10.3	1,972	96	2.6	191,514	10,338	4.9	18,699	743
Michigan	5.0	16,162	770	3.5	321,384	17,717	6.0	81,348	2,715
Minnesota	12.2	7,496	276	2.1	179,443	10,525	5.6	10,894	338
Mississippi	25.1	1,616	69	5.1	66,425	3,419	4.5	58,592	2,830
Missouri	9.9	6,428	325	4.5	196,096	10,348	5.8	36,015	1,424
Montana	10.4	1,002	45	6.3	33,924	1,702	6.7	238	7
Nebraska	4.7	5,786	2/11	2.0	60,938	3,493	3.2	4,147	122
Nevad a	10.0	26,911	1,208	6.4	51,610	2,627	4.5	9,821	409
New Hampshire	0.0	441	19	2.7	52,202	2,644	0.0	609	21
New Jersey	17.4	6,9.55	305	2.3	213,327	11,813	4.3	56,159	2,393
New Mexico	7.1	27,099	1,214	4.9	26,706	1,309	2.8	2,065	63
New York	14.6	17,410	634	2.7	444,419	25,634	3.8	1/11,273	5,334
North Carolina	15.1	16,785	7/18	4.5	224,428	11,724	4.0	95,502	4,262
North Dakota	11.0	498	15	4.4	22,637	1,296	6.6	228	8
Ohio	4.3	6,997	354	3.3	388,466	20,539	4.0	70,905	2,853
Oklahoma	9.5	12,100	581	3.9	97,109	4,983	2.7	13,519	472
Oregon	9.1	17,782	802	4.7	114,069	5,806	0.7	2,958	108
Pennsylvania	15.0	4,196	163	3.9	396,587	21,771	3.8	58,501	2,104
Rhode Island	9.4	265	15	2.9	31,128	1,604	9.3	2,644	104
South Carolina	19.3	4,037	185	3.9	106,348	5,640	3.6	65,414	2,739
South Delecta	15	971	31	3.3	27,784	1,501	0.0	224	7
Tennessee	19.0	6,333	307	3.4	181,496	9,429	3.7	53,186	2,140
Tesas	6.2	385,872	17,791	3.1	431,102	23,696	3.4	135,042	5,611
Utah	6.5	11,597	489	2.6	95,614	5,346	0.7	1,23/1	50
vermont	0.0	111	5	3.5	24,734	1,244	7.7	285	8
Virginia	15.6	5,562	285	2.7	194,753	10,526	3.7	72,640	3,205
Washington	6.3	28,380	1,333	3.6	191,604	10,108	4.6	9,902	389
West Virginia	16.2	727	30	5.1	63,685	3,221	9.4	2,298	95
Wisconsin	7.3	10,477	393	Z.5	190,855	11,155	7.1	19,209	533
wyeming	8.3	1,329	81	4.9	18,174	947	0.0	<u>217</u>	4
iotal		1,576,821	71,269		7,633,347	410,175		1,891,641	76,410
Pop. Mean	5.7			3.5			4.3		
Pop. Std. Dev.	25.0			18.3			20.2		

The disproportionate number of Mexican origin adolescents living in California and Texas shifts the average level of Mexican origin non-enrollment downward. When Mexican origin adolescents in California and Texas are dropped from the sample, the overall rate of Mexican origin non-enrollment increases to 9.7 percent (author's calculation). Importantly, the descriptive analysis of Mexican origin non-enrollment rates by state helps to justify the use of multilevel modeling. There is notable betweenstate variation in rates of non-enrollment among Mexican origin adolescents, and multilevel modeling will reveal how individual and state-level characteristics influence this heterogeneity.

Multilevel models: Between-state variance in the log odds of Mexican origin nonenrollment

As discussed, I restrict the multilevel analysis to the Mexican origin 15-17 yearold sample in the 2005-2009 ACS (n=71,269). Table 3 displays the results for a series of stepwise multilevel logistic regression models, with school non-enrollment as the dependent variable. In this section, I mainly focus on a discussion of the determinants of between-state variation in the log odds of Mexican origin non-enrollment. However, I make note of the significance of the log odds coefficients when relevant. Of particular interest are the variance of the intercept (state) in the "random effects" row at the bottom of Table 3, and the ordered state random effects parameters, displayed in Table 4. The state random effects parameters indicate how the states' mean log odds of non-enrollment deviate from the overall mean of the state means. States with positive random effects values represent states that have higher mean log odds of non-enrollment relative to the overall mean of the state means. Conversely, states with negative random effects values have lower mean log odds of non-enrollment relative to the overall mean of the state

means. Substantively, positive random effects values should point to states with negative schooling contexts, whereas negative random effects values should represent states with positive schooling contexts. I am hesitant, however, to make firm statements about the quality of schooling contexts within states based on the random effects values, as some portion of the between-state variance is due to compositional factors (as I will demonstrate) and another portion of the variance is likely due to unmeasured heterogeneity. (Non-ordered random effects parameters for each state and each model are listed in the Appendix, Table A3.)

In the first model (Model 1), which only controls for age and sex, the variance of the intercept is .20. In this model, the five states with the largest positive random effects include Alabama, Kentucky, Mississippi, New Jersey, and South Carolina, and the five states with the largest negative random effects (lowest mean likelihoods of nonenrollment) include California, Nebraska, Wisconsin, Ohio, and Texas (see Table 4 and Figure 1). The baseline model indicates that, before controlling for compositional factors, non-enrollment is particularly high among Mexican origin adolescents in some of the Southern states and New Jersey. In contrast, non-enrollment appears to be lower than average in the established gateways of California and Texas, and the Midwestern states of Nebraska, Wisconsin, and Ohio.

When immigrant generation variables are introduced in the model (Table 3, Model 2), the variance in Model 1 is reduced by over 50% (to .09). This indicates that a substantial portion of the baseline between-state variance in log odds of non-enrollment can be attributed to the unequal distribution of Mexican origin adolescents with different generational statuses (nativity statuses and years of residence) across states.

Table 3. Fixed and Random Effects Estimates from Multilevel Logistic RegressionModels of School Non-Enrollment to Enrollment, Mexican Origin 15-17 year-olds,2005-2009 ACS.

	Mos	<u>dei 1</u>	Mo	del 2	Me	del 3	Mo	del 4	Moc	<u>tel 5</u>
Fixed Effects	log odds	E	log odds	2	log odds	E	log odds	E	log odds	2
Individual Level										
Demographics					1					
Age 16	0.61	0.000	0.51	0.000	0.47	0.000	0.48	0.000	0.48	0.000
Age 17	1.47	0.000	1.30	0.000	1.24	0.000	1.24	0.000	1.25	0.000
(Ref. Is Age 15)										
Male	0.26	0.000	0.17	0.000	0.17	0.000	0.18	0.000	0.18	0.000
(Bet is Female)					1					
immissont Generation							ì			
1 25 Generation			2.57	0.000	2.02	0.000	191	0.000	191	0.000
1 S Generation			0.93	0.000	0.73	0.000	0.72	0.000	0.71	0.000
1 75 Generation			0.61	0.000	0.49	0.000	0.49	0.000	0.69	0.000
(Bef is Matter, Bara)										
Engla Status in Hausahald										
Managements in UL.					1.61	0.000	1 5 1	0.000	1 5 1	0.000
Matana an Dahas					0.51	0.000	0.47	0.000	0.47	0.000
Fribas no Mother	_		-		0.32	0.000	0.07	0.000	2.0	0.000
Part Ar, no with the (Ded to betweet)					9.79	0.000	0.65	0.000	0.65	0.000
(rus : is investige Descented Education										
Management as III, second					1.04	0.000	1 70	0.006	1 70	0.000
No parant or ne record					0.04	0.000	1.70	0.000	1.10	0.000
MENS CHARTED					0.51	0.000	0.50	0.000	0.50	0.000
na Degree ar doo Sama Collean	_				0.07	0.000	0.07	0.000	0.07	0.000
se corege	_		-		0.31	0.001	0.31	0.001	0.31	0.001
AD (Def & DA see DA.)					0.24	0.032	0.271	0.037	0.24	0.057
(Full - IS DR. aniu DR.*) On ventus Etertain										
Polence December					0.08	0.075	0.04	0.400	0.04	0.400
1 Ja Des Taseche d					0.00	0.076	0.01	0.100	0.01	0.100
1-24 FOV. Filleshold ID-4 is 19 - Dec Theorem and					0.07	0.122	0.05	0.232	0.05	0.253
(MELB 2A 1 POR IDEBTICIO)										
Wetropolition Status							0.47	0.001	0.47	0.001
Central City							0.16	0.001	0.10	0.001
non-metropolitan							-0.02	0.678	-0.05	0.598
IKE' IS OTHER methologi methologi										
icentifica;										
washiry										
Recent mobility (1 Vr.)							0.57	0.000	0.57	0.000
(Ref. B no mobility, 1yr.)										
State Level										
vmmigration History										
1990 Hore gn sorn (%)									-6.01	0.236
1990-2010 FB Growth (%)										
Peer Composition										
NH black 15-17 year-olds (76)										
Educational Loniest										
NH WITTE peer non-enro iment (%)										
NH Black peer non-enrol ment	_									
		0.000	7.04	0.000	1.07	0.000	1.05	0.000		0.000
Intercept Dominan Classo	-3.42 Man	Carl Cr-	-5.81 Vez	0.000 Starl Ecr.	-4.87 Man	Could Erro	-4.55 Mar	0.000 Stal Erro	-9.98 Max	U.UUU Starl Earc
Intercent (State)	<u>war.</u>	<u> 2400. ETL</u> 2.0274	<u>var.</u>	<u>500. crr.</u> 0.020	A gov	<u>300. ETT.</u> 0.020	a cor	<u>318. EIT.</u> 0.031	<u>var.</u>	<u>2001. Eff.</u> 2.020
nice capa (Statul)	0.200	0.004	0.000	0.025	34607.7	0.025	0.003	0.051	24566 02	0.030
	288815.1		20081.9		2/10/27.7		24000.2	1	21000.02	
n	/1259		/1259		/1268		/1268		/1258	

(Table 3 Cont'd.)

	Mod	<u>el E</u>	Mod	<u>lel 7</u>	Moc	lel 8	Mod	<u>el 9</u>
F sed Effects	log odds	P	<u>log odds</u>	₽	log odds	P	log odds	£
Individual Level								
Genergenables								
Age 16	0.48	0.000	0.48	0.000	C.48	0.000	0.483	0.000
Age 17	1.24	0.000	1.24	0.000	1.25	0.000	1.245	0.000
(Ref. is Age 15)								
Male	0.18	0.000	0.18	0.000	C.18	0.000	0.178	0.000
(Ref. is Female)								
immigrant Generation								
1 Z5 Generation	1.91	0.000	1.91	0.000	1.90	0.000	1.908	0.000
15 Generation	0.71	0.000	0.71	0.000	C.71	0.000	0.715	0.000
175 Generation	0.49	0.000	0.49	0.000	C.49	0.000	0.492	0.000
(Ref. is Native-Born)								
Family Status in Household								
No perents in HH	6.52	0.300	1.52	0.000	1.51	0.000	1.515	0.000
Mother, no Father	0.47	0.000	0.47	0.000	C.47	0.000	0.466	0.000
Father, no Mother	0.69	0.000	0.69	0.000	C.68	0.000	0.684	0.000
(Ref. is Intact)								
Parentol Education								
No parent or HH racord	1.77	0.000	1.77	0.000	1.77	0.000	1,767	0.000
Less than HS	0.95	0.000	0.95	0.000	C.95	0.000	0.953	0.000
HS Degree or SED	0.67	0.000	0.67	0.000	C.67	0.000	0.672	0.000
Some College	0.01	0.001	0.01	0.001	C.D1	0.001	0.004	0.001
AA	0.24	0.358	0.24	0.058	C.24	0.057	0.234	0.061
(Ref. is BA and BA+)								
Paverty Statu:	_							
Delay Porerts	0.04	0.911	0.05	0.413	C.04	0.410	0.040	0.411
1.2x Poy Enreshold	0.05	0.239	0.05	0.239	0.05	0.235	0.055	0.732
(Ref. is 2X + Pay Torespole)	0.02		17 - 17 and		100 W 107		D. Caral	inter die of die
Metranolian Status								
Central City	0.16	0.000	0.16	0.000	C 16	0.000	0.168	0.077
Nan-metropoitan	-0.03	0.541	-0.03	0.611	- C (13)	0.624	-0.030	0.610
like" is other metro or metro rot						1100-1		
icentified								
Mahilu	_							
Parant map () / ()	0.57	0.200	057	0.000	7 57	0.000	0 572	0.000
(Ref. is no mobility 1 ur.)								CI INITS
State Level								
(mastaranan kistaru	_							
1390 Sors er. 20m //23	_		-0.01	0.640	.0.01	0.654	c 00 2-	0.954
1290-3013 ER Grouph (%)	0.00	0.774	0.00	0.164	0.00	0.205	0.000	0.0212
Ever Comparidae	0.00	0.074	0.00	0.101	2.00	0.103	0.000	0.02.3
NH Kenz 15.17 year day f%d					6.001	(1.857	0.005	0.450
Encetheral Contact						0.707	0.003	10, 25, 21
NH White near non-sora (mont (%)							0.164	0.001
NH Riss peer contained most							0.012	0.001
NH Discy Seet Follyering There							0.012	5.723
latarrant.	00 k	0.200	1.00	0.005	/ 00	0.000	5.00	0.000
Random Minste	Var	Ctel Ere	Mag	Ctol Ere	Var	Ctel Ear	Jae	Cad Err
Intervent (State)	<u>94r.</u> 0.794	<u>מר בוו.</u> מר ה	<u></u>	<u>2007. Ell.</u> (1.129	<u>ear.</u> 0.626	<u></u> 0.037	<u>eer.</u> 0.055	0.011
BIC	2/16/2/ 20	0.740	2/15/75 21	0.020	245.95 60	1.44.1	7/597.67	0.02.1
	21369		51269		71263		71268	
1			1 AL 14 AL					

Aldutime 0.81M Foldatime 0.81M Foldatime Missis pp 0.010 Missis pp Missis pp Missis pp Foruld 0.258 Missis pp Missis pp Missis pp Corolid 0.258 Missis pp Missis pp Missis pp Varginia 0.538 Missis pp Varginia Varginia Martinia 0.349 Georgia Missis pp Martinia 0.326 Missis pp Missis pp Martinia 0.323 Missis pp Missis pp Martinia 0.323 Missis pp Missis pp Marsi Marria 0.310 Missis pp Missis Marsis 0.323 Missis Missis Marsis 0.310 Missis Missis Marsis </th <th>a C.438</th> <th>Fbrda</th> <th>C.471</th> <th>Flor dz</th> <th>020</th> <th>Florida New Isray</th> <th>5650 5650</th>	a C.438	Fbrda	C.471	Flor dz	020	Florida New Isray	5650 5650
Kennuncy 0.610 Manuer Pinalisarp 0.610 Mascuria Pinalisarp 0.531 Mascuria 0.241 0.531 Catonaco Georgia 0.531 Catonaco Berliance 0.531 Catonaco Georgia 0.531 Catonaco Berliance 0.531 Catonaco Mascuriance 0.412 Mascuria Variance 0.412 Mascuria Mascuriance 0.413 Macrula Antennas 0.414 Macruia Mascuriance 0.415 Mascuria Mascuriance 0.416 Mascuria Mascuriance 0.417 Macruia Mascuriance 0.135 Marcuria Mascuriance				h Ain von di	2000	New Jarawa	E 90
Missis pp 0.010 Missis pp 0.00	ra C 806	R/Brown i	C 412				
hear litter 0.606 Mesons 0.47 Grol ma 0.551 Varma 0.47 Grol ma 0.551 Varma 0.44 Grol ma 0.551 Varma 0.44 Grol ma 0.551 Messis pr 0.44 Grol ma 0.551 Messis pr 0.44 Grol ma 0.514 Wernice 0.44 Grol ma 0.42 Grol ma Messis pr 0.44 Grol ma 0.42 Grol ma Messis pr 0.44 Grol ma 0.42 Grol ma Messis pr 0.44 Grol ma 0.42 Grol ma Messis ma Messama 0.42 Grol ma Messis ma Messama 0.15 Grol ma Messis ma Messama 0.15 Grol ma Messama Messama 0.16 Grol ma Messama Messama 0.17 Grol ma Messama Mesma 0.17 G	wi C.338	Alaberne	0.391	Alaberne	C.398	Aleberne	0.055
2.1/ Grol nr 0.578 Nex.Jarsey 600 201 0.581 Vanis 1 prift Grol nr 0.548 Missis gu Vanis 0.548 Missis gu Vanis 0.548 Missis gu Vanis 0.548 Missis gu Vanis 0.501 Vanis Masses 0.419 Missis gu Missis 0.419 Missis gu Missis 0.410 Missis Missis 0.410 Missis Missis 0.420 Missis Missis 0.420 Missis Missis 0.421 Missis Missis 0.253 Missis Missis 0.215 Missis Missis 0.215 Missis Missis 0.216 Missis <td< td=""><td>(a C.322</td><td>Coaracto</td><td>C.325</td><td>Very Jersey</td><td>S.</td><td>Missouri</td><td>035A</td></td<>	(a C.322	Coaracto	C.325	Very Jersey	S.	Missouri	035A
Gacegis 0.551 Consco 2.349 Variation IPH Grantina 0.449 Warning Variation Variation 0.449 Minister Variation Variation 0.449 Minister Variation Marcella 0.528 Minister Minister Marcella 0.327 Marcella Marcella Marcella 0.327 Marcella Marcella Missibility 0.316 Marcella Marcella Mass Mignia 0.316 Marcella Marcella Mass Mignia 0.316 Marcella Marcella Colutaco 0.316 Marcella Marcella Colutaco 0.316 Marcella Marcella Colutaco 0.316 Marcella Marcella Colutaco 0.317 Marcella Marcella Colutaco 0.317 Marcella Marcella Colutaco 0.316 Marcella Marcella Colutaco 0.316 Marcella Marcell	sev C.293	Neraca	C.3L3	Corado	CBI3	Neusca	0336
Fonda 0549 Vigna Vignolocina 0548 Wississin Vignolocina 0538 Wississin Vignolocina 0419 Wississin Vancerses 0419 Wississin Vancolocina 0327 Wississin Merson 0327 Wississin Merson 0327 Merson Merson 0327 Merson Merson 0319 Merson Merson 0310 Merson Merson 0105 Merson Merson 0110 Merson Merson 0110 Merson Merson 0122 Merson Merson 0123 Merson Merson 0123 Merson Merson 0123 Merson Merson 0127 Merson Merson 0127 Merson Merson 0127 Merson Merson 0127 Merson	co C.275	(artur 9	0.311	(entur-y	C.305	Colorado	0.298
Gruth Garol rea 0.528 Mississ pr Viennia 0.449 Sourcusy Viennia 0.419 Sourcusy Turveeus 0.412 Sourcusy Turveeus 0.412 Sourcusy Turveeus 0.412 Sourcusy Turveeus 0.412 Nurth Pacola Marth Dacola 0.412 Nurth Pacola Marth Dacola 0.152 Dadowers Marth Dacola 0.153 Nurth Carol ne Marth Dacola 0.142 Nurth Carol ne Marth Dacola 0.142 Nurth Carol ne Marth Dacola 0.143 Nurth Carol ne Marth Dacola 0.143 Nurth Carol ne Marth Martin 0.143 Nurth Carol ne Marth Martin 0.143 Nurth Carol ne Marth Martin 0.143 Nurth Martin Marth Martin 0.143 Nurth Martin Marth Martin 0.144 Nurth Martin Marth Martin 0.144 Nurth Martin Marth	E (.455	New Jarvey	C.303	Navada	106.0	Kentuc+y	0797
Viennia 0.448 Georgia Avenue Viendau V	BID C.234	Vreinia	C. 255	orebi	522	Virginia	0.258
Delane w 0.415 Contraves 0.424 Martury Therresters 0.374 Nerry Bacola 1 Arrentass 0.327 Martury Erroson Arrentass 0.327 Martury Erroson Arrentass 0.327 Martury Erroson Mass Wart Bacola 0.319 Martury Erroson Mass Wart Bacola 0.132 Martury Erroson Mass Wartinia 0.132 Marturas Erroson Mass Warturia 0.1319 Warturia Erroson Curatoru 0.1312 Marturas Erroson Curatoru 0.1327 Farroson Erroson Curatoru 0.1327 Farroson Erroson Curatoru 0.137 Farras Erroson Marturia 0.137 Maranas Euroson Curatoru 0.137 Farras Erroson Marturia 0.137 Marana Euroson Marturia 0.137 Marana	6 C234	or ebi	C.212	Vrginia	C264	orepi	0.246
Vacuation 0.42/4 Nerth Pacela Perreseration 0.427 Targon Artenans 0.427 Targon Martinans 0.453 Nan Vort Martinans 0.453 South Caroling Martinans 0.453 South Caroling Martinans 0.453 South Caroling Mast Migridi 0.112 Nast Migridi Mast Migridi 0.112 Nast Migridi Mast Migridi 0.112 Nast Migridi Mast Migridi 0.0127 Ferresate Mast Migridi 0.0127 Perrespective Mast Migridi 0.0127 Perrespective Mast Migridi 0.027 Terresate Martinans 0.026 Terresate Martinans 0.027 Terresate Martinans 0.027 Terresate Martinans 0.026 Revertue Martinans 0.027 Terresate Martinans 0.026 Revertue Martinans 0.027 <td< td=""><td>A9 C.244</td><td>Nurth Darota</td><td>C.135</td><td>Owgela</td><td>C POI</td><td>New York</td><td>0.133</td></td<>	A9 C.244	Nurth Darota	C.135	Owgela	C POI	New York	0.133
Terresces 0.777 (Tergen Ansatures 0.226 New Correst Ansatures 0.226 New Correst Ansatures 0.252 New Correst Ansatures 0.253 Dedevere 1.254 Correst Ansatures 0.253 Dedevere 1.254 Correst Ansatures 0.257 South Correst Ansatures 0.257 Perveyering 1.1015 Ansatures 0.257 Perveyering 1.1015 Ansatures 0.257 Perveyering 1.1015 Ansatures 0.258 New Correst Ansatures 0.252 New Correst Ansatures 0.252 New Correst Ansatures 0.257 Perveyering 1.1015 Ansatures 0.258 New Correst Ansatures 0.252 New Correst Ansatures 0.257 Perveyering 1.1015 Ansatures 0.258 New Correst Ansatures 0.258 New New New Correst Ansatures 0.258 New	sota C.180	Georgia	C.179	North Davota	C.193	Vorth Carota	0.180
Artensas 0.226 Elence Marsouri 0.240 New York Marsouri 0.240 New York Marsouri 0.240 New York Newson 0.145 New York Newson 0.132 New York Newson 0.135 New York New Warnia 0.145 Warsikinia Persopheraia 0.143 Warsikinia Oregon 0.135 Rates: Oregon 0.135 Karss: Oregon 0.135 New Nettion Marsten 0.105 New Nettion Marsten 0.127 New Nettion Marsten 0.127 New Matico Marvisia 0.136 Ner Nork Stachb meta 0.137 Ner Nork	m C 177	D-Pgon	C 11R	Drepne	C 137	Gentela	0.171
Missouri (Lab) New York Assouri (Labo) New York Assouri (Labo) (L	c.174	West Virginia	C.131	Sout Caroline	6.125	Onegoe	0.140
North Bacola 0.257 South Caroline Masterio 0.112 Masterio 1.122 Ma	rk C.166	South Caroline	0.124	Ue avaie	C15M	Lelavaie	771.0
Nerses 0.15.3 Delevers Tamo 0.1352 Nurriticas 1.4 Pervesberria 0.1319 Wass. Marria 1.4 Pervesberria 0.1319 Wass. Marria 1.4 Cregori 0.057 Ransas: 1.4 Coloracou 0.132 Wass. Marria 1.4 Mortiana 0.017 Pervespartia 1.4 Mortiana 0.027 Pervespartia 1.4 Mortiana 0.027 Pervespartia 1.4 Mortiana 0.027 Pervespartia 1.4 Mortiana 0.027 Pervespartia 1.4 Mortiana 0.028 Marsacturactura 0.028 Marsactura Mortiana 0.027 Pervespartia 1.4 1.4 Vermont 0.028 Marsactura 0.028 Marsactura 1.4 Vermont 0.028 Marsactura 0.028 Marsactura 1.4 Vermont 0.028 Marsactura 0.028 Marsactura	ol ne C. 162	Deathate	C.116	Mississ pp	C.124	South Caroline	0110
Itano 0.132 North Carolina Mas: Migria 0.149 Was: Migria Perveybrania 0.149 Was: Migria Cueson 0.137 Karaas Cueson 0.137 Karaas Cueson 0.137 Karaas Cueson 0.037 Karaas Monetalsmud 0.033 Newford Monetalsmud 0.033 Nemort Universita 0.028 Nem Matto Venning 0.129 Nem Matto Venning 0.128 Nem Matto Northead 0.128 Nem Matto	re C.156	Karea:	C.116	Wasi V rg nis	C.114	West Ving nia	0.1.1
Mas: Migiria 0.119 Was: Migiria Culoiseve 0.110 Was: Migiria Culoiseve 0.110 Warawa Culoiseve 0.110 Karawa Culoiseve 0.110 Karawa 0.122 Renorteda 0.123 Waraont 1.110 Karawa 0.122 Renorteda 0.123 Nonesta 0.123 Nonesta 0.123 Nonesta 0.122 None 0.123 Nonesta 0.127 None 0.128 None 0.128 None 0.127 None 0.128	OI PB C. 135	Mealss pp	C.112	Names.	C.105	Mississ pp	0.098
Pervasjornia 0.112 Nemava Galaraco 0.110 Anamas Calaraco 0.057 Pervasharia Interesta 0.057 Pervasharia Merrana 0.057 Pervasharia Merrana 0.057 Pervasharia Merrana 0.057 Pervasharia Merrana 0.056 Terreaste Merrana 0.026 Rosetherdia Merrana 0.026 Rosetherdia Merrana 0.027 Rosetherdia Vermork 0.028 New Maine Vermork 0.028 New Maine Vermork 0.028 New Maine Vermork 0.128 New Maine Vermork 0.127 New Maine Jan 0.128 Nitherdia Valor 0.128 New Maine Jan 0.127 New Maine Jan 0.128 New Maine Jan 0.127 New Maine Jan 0.127 New	ania C113	New York	C.105	.ouisiana	C.102	Massachusetts	0.094
Culvins.vv 0.110 Avanuas Oragom 0.057 Pervayuria Memana 0.026 Pervayuria Nodelband 0.023 Nermont Memory 0.023 Nermont Memory 0.023 Nermont Vermont 0.023 Nermont Vermont 0.023 Nermont Vermont 0.023 Nermont Vermont 0.027 Nermont Vermont 0.027 Nermont Vermont 0.027 Nermont Vermont 0.127 Nermont <	1a C.084	colisiana.	C.096	Pennsylvania	C.078	Kansas	0.079
Cregon 0.057 Karas. Invisional 0.077 Renessional Mennana 0.077 Terressen Mennana 0.070 Terressen Monnana 0.072 Terressen Roocelsland 0.026 Meana Monnan 0.022 Meana Monnan 0.022 Meana Monnan 0.022 Meana Monnan 0.023 Meana Monne 0.023 Meana Monne 0.024 Meana Monne 0.025 Meana Monne 0.025 Meana Monne 0.025 Meana Monne 0.025 Meana Manushtre 0.126 Manushtre Manushtre 0.127 Mean Manushtre 0.126 Mean Manushtre 0.126 Manushtre Manushtre 0.127 Mean Manushtre 0.126 Manushtre Manushtre <td>40-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C</td> <td>Vioniar a</td> <td>C.081</td> <td>Masseluaria</td> <td>5</td> <td>buis and</td> <td>0.078</td>	40-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	Vioniar a	C.081	Masseluaria	5	buis and	0.078
Initiation 0.027 Pervoyveria Merrana 0.026 Terrease Merrana 0.026 Terrease Merrana 0.026 Terrease Montaria 0.026 Terrease Montaria 0.028 Resoctabried Vermont 0.028 Resoctabried Vermont 0.028 Resoctabried Vermont 0.028 Resoctabried Vermont 0.028 Nemoly Vermont 0.027 Non Vermont 0.027 Non Vermont 0.027 Non 11 visut 0.027 Non 0.033 0.127 Non Vermont 0.127 Non Valaria	1 C.077	Massachusetts	C.079	Mentara	C.071	Penrsy yanja	0.061
Merrana 0.020 Terressee Mesacrusetts 0.020 Nesacrusetts Nesacrusetts Mernork 0.023 Nodelberd Nesacrusetts Netmork 0.023 Rosetberd Nesacrusetts Vermork 0.025 Rosetberd Nesacrusetts Vermork 0.025 Rosetberd Nesmont Vermork 0.025 New Macro Nesmont Vermork 0.025 New Macro New Macro Oxba sets 0.125 New Macro New Macro Oxba sets 0.127 New Macro New Macro Mark 0.127 New Macro New Macro	ania C 046	Month Carolina	C 033	New York	C (12)	Minutara	0.056
Passacrusetts 0.0.06 Missacrusetts 0.0.06 Rhoderland 0.0.04 Meraberts Meraberts Vermont 0.0.23 0.0183ara Meraberts Vermont 0.0.23 0.0183ara Meraberts Kinvasis 0.0.23 0.0183ara Meraberts Kinvasis 0.0.23 Nermont Meraberts Kinvasis 0.0.23 Nermont Meraberts Vermont 0.0.22 Nermolation Meraberts Scuth Desents 0.1.27 Nerm Macro Meraberts Scuth Desents 0.1.27 Nerm Macro Meraberts Meraberts 0.1.27 Nerm Macro Meraberts Alster 0.1.27 Nerm Macro Meraberts Meraberts 0.1.	se (.000	Pennaylvania	C.012	North Carolina	C.014	Proce sland	0.035
Procellatind C.CM Ckatome C.C22 Reaching C.C22 Reaching Classical Classical <td>setts CUIto</td> <td>Khoge Island</td> <td>C. USD</td> <td>Khode Island</td> <td>0.034</td> <td>Roth Carol ra</td> <td>0.000</td>	setts CUIto	Khoge Island	C. USD	Khode Island	0.034	Roth Carol ra	0.000
Okatoma 0.222 Resolutional 0.222 Resolutional 0.223 Resolutional 0.223 Nonlistrat 0.0163 0.0125 0.0163 0.0125 0.0163 0.0125 0.0163 0.0125 0.0163 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0123 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0101 0.0125 0.0101	TIG C.025	Vermont	-4.013	Naw Westoo	C 001	New Mexico	-0.01
Vermore 6.173 collisina Vermore 6.183 Vermore 1.183 Vermor	End C.012	Tennesses	1015	vermont	0.013	Wermont.	C.013
Karses 4.183 Vermont Difversita 0.128 Wreming 1 Terrinni 0.128 Naw Mazico 1 Terrinni 0.127 Naw Mazico 1 Scuth Bresis 0.127 Naw Mazico 1 Scuth Bresis 0.127 Nam Mazico 1 Scuth Bresis 0.127 Nam Mazico 1 Vanviand 0.127 Nam Mazico 1 Vanviand 0.127 Nams 1 Marken 0.123 Nams 1 Marken 0.132 Nams 1 Marken 0.132 Nams 1 Marken 0.132 Nams 1 Marken 0.132	na C.021	Artenses	-6.019	Artenses	-6.018	Arizona	-C.005
Lith-rateda C.BS Wrenning 1-uian: -0.122 Nacora 1-uian: -0.122 Nam Mazica 5-uith Dassia -0.125 Nam Mazica 5-uith Dassia -0.125 Nam Mazica 5-uith Dassia -0.125 Nam Mazica 0xia -0.125 Nam Sitea 0xia -0.125 Namis 0xia -0.125 Namis 0xia -0.125 Namis 1an -0.127 Nasis Abara 6.127 Dastica for unit a Ian -0.127 Dastica for unit a Ian -0.127 Dastica for unit a Mah -0.123 Manal Makeh rgon -0.132 Nach rgon Masic -0.132 Manal Masic -0.132 Nach rgon Inan -0.142 -0.141 Nach Macico -0.135 Nach rgon Masic -0.141 -0.141 Nach Macico -0.142	nt -4.024	Okleho-na	-4.023	Temessee	-0.019	Wyoming	-0.049
1 - Ulatte: -0.122 A Low et al. Alpointe: -0.127 Nam Matico -117 Nam Matico -0.127 -0.00 -0.127 Nam Matico -0.00 -0.127 Name Marviand -0.227 Name Marviand -0.127 Name Marviand -0.127 Name Marviand -0.127 Name Marviand -0.128 Marviand Marviand -0.121 Name Marviand -0.122 Marviand Marviand -0.1100 -0.132 Marviand -0.1100 -0.1100 Marviand -0.1100 -0.1100 Vectoricut -0.121 Name Vectoricut <td< td=""><td>ng LONG</td><td>Nam Westco</td><td>-8.02S</td><td>Wyoning</td><td>-0.085</td><td>Tannessee</td><td>-0.05</td></td<>	ng LONG	Nam Westco	-8.02S	Wyoning	-0.085	Tannessee	-0.05
Appending 0.137 Nam Medico rith of finantia 0.175 Namitiantia cub action 0.175 Namitiantia cub action 0.175 Namitiantia cub action 0.175 Namitiantia cub action 0.177 Namitiantia Variantia 0.177 Namitiantia Variantia 0.127 Namitiantia Maintia 0.127 Namitiantia Maintia 0.137 Namitiantia Maintia 0.137 Namitiantia Mark 0.232 Mith namitiantia Mark 0.132 Mith namitiantia Correctiout 0.1332 Mith namitiantia Correctiout 0.1332 Mith namitiantiantiantiantiantiantiantiantiantia	-\$10(\$-	Wyon ring	-4.037	Okletur la	110'0-	At het ses	-C.050
rith 3/ frumh a 6 (54) Sauth Dansia Sauth Dansia 4.172 Name lamashra Sauth Dansia 4.172 Name Vanviand 4.172 Name Vanviand 4.172 Owa Vanviand 4.172 Owa Alssis 0.172 Owa Alssis 0.123 Marken Riane 0.213 Darke Stouth a Riane 0.212 Darke Stouth a Riane 0.212 Darke Stouth a Riane 0.213 Darke Stouth a Riane 0.213 Markell Riane 0.332 Markell Riane 0.332 Markell Riane 0.332 Markell Itana 4.114 Itana Markel 0.132 Markell Itana 4.114 Itana Hawai 0.132 Markell Hawai 0.141 Tana Hawai 0.142 Tana Nethersion 0.132 Warken Nethersion 0.162 2010 Nethersion 0.162 2010	zizo -\$.090	Arizona	-0.065	Arizona	-0.050	New Harntachine	-C.050
Galor Densets 4.17C Inner Hamman 5	icela -£ 067	New Hamschire	-6 063	kew Hamoshire	-0.067	Dklahnna	50U J-
Costa 4.1/2 Varyand Kanne 4.1/2 - 175 Kanne - Arten 4.175 Arten Arten - <	ahra -4.071	Alarikan	4.073	Гейли	-0.007	Aaska	980. 7
Varviand 6.177 ova Ariaora 6.197 ova Ariaora 6.197 Ariaka Maine 6.213 District of Count a Iran 6.228 Minneseta Maw Merico 6.238 Minneseta Maw Ariaka 6.332 Markingan Correctiout 6.332 Markingan Correctiout 6.332 Markingan Correctiout 6.332 Markingan Correctiout 6.332 Markingan Havei 6.341 Trans Minigan 6.341 Trans Minigan 6.341 Trans Minigan 6.341 Trans Minigan 6.342 Mindiant Havei 6.342 Mindiant Havei 6.342 Mindiant Havei 6.342 Mindiant Havei 6.342 Mindiant Mindiant 6.342 Mindiant Havei 6.342 Mindiant Havei 6.342 Mindiant Mindiant 6.342 Mindiant Havei 6.342 Mindiant Mindiant 6.342 Mindiant Mindiant 6.342 Mindiant Mindiant 6.342 Mindiant	70712- 8	Maine	-5,185	Aaska	090.0-	Hawaii	1.012
Atlantation 6.1497 Atlantation Atlantation Klaim 4.213 District 3.00 umb at a state 1 Klaim 4.213 District 3.00 umb at a state 1 Markin 4.212 District 3.00 umb at a state 1 Markin 4.212 District 3.00 umb at a state 1 Markin 4.232 Hawaii 1 1 Markin 4.232 Wach 1.000 4.332 Wach 1.000 1 Markin 4.232 Wach 1.000 4.332 Wach 1.000 1 1 Correction 4.332 Wach 1.000 4.0.11 1 1 1 Unition 4.0.12 0.0.12 Wach 1.000 1 1 1 1 Markin 4.0.12 Markin 4.0.12 7 1	4.107	l'roian:	4,059	Maine	-0.105	Naire	СП.Э.
Bern Hamcaftre 6.213 Mithressea 6.213 District of Countrial Mithressea 6.213 District of Countrial Mithressea Mithressea <thmithressea< th=""> Mithressea <</thmithressea<>	e.113	ewd	¢.100	uwq	0.106	Inskn:	C.125
Klairre 6.217 District 3C ountria Han - 0.232 District 3C ountria Alexe - 0.232 Harval Merr Metto - 0.332 Harval Merr Metto - 0.332 Harval Correcticut - 0.332 Mechanizan Correcticut - 0.332 Mechanizan Limen - 0.414 Mechanizan Mithain - 0.414 Meranizan Harvai - 0.412 Meranizan Vasan - 0.412 Tosas Vasan - 0.412 Tosas Vasan - 0.412 Tosas Tosas - 0.412 Tosas Vasan - 0.412 Tosas Vasan - 0.412 Tosas Vasan - 0.412 Merralian Vasan - 0.412 Merralian Vasan - 0.412 Merralian	eta -¢.115	Minnesota	-4.115	Hawall	-0.123	ewcl	-0.131
Itan 4.755 Itan 4.755 Itan Markin 4.295 Hurbail 1.411 1.411 Markin 4.332 Harvail 2.332 Harvail 1.411 Markin 4.332 Markin 4.332 Markin 1.411 1.411 Correctiout 4.332 Markingan 4.414 Markingan 4.414 Markain 4.414 Markingan 4.414 Trans 1.4123 1.4123 Markain 4.412 Markain 4.412 Trans 1.414 1.4123 1.414 1.4123 1.414 1.4123 1.414 1.4123 1.414 1.4123 1.414 1.4123 1.414<	oumta -¢.135	Hawall	-4.125	LEN	-0.126	١٤٦	-C.144
Marka 6.29E Future Cuture Cuture <td>- 141</td> <td>cell</td> <td>161 17</td> <td>Minnersta</td> <td>6EI U-</td> <td>South Percete</td> <td>-C 195</td>	- 141	cell	161 17	Minnersta	6EI U-	South Percete	-C 195
New Mexico 0.332 Harval	ы -¢.МЕ	Suct. I Devele	-\$.140	Suut. I Devula	-6.14L	Mir resulut	-C.159
Wehrrycon 0.236 Wichigen - Correctious 0.232 Wehrgon - Corrections 0.152 Wehrgon - Mithgan 0.112 Mariana - Mavai 0.102 Mariana - Teas 0.102 - Teas 0.102 - Netresia 0.102 - Netresia 0.102 - Netresia 0.102 - Netresia 0.102 - 	G1.4	Withgan	4.157	Vich gam	-0.156	District of Coumbia	-0.120
Correctiont 0.151 Weeh rgon - II mass 4.714 II mass - - - Michain 4.714 Nirvland -	at.172	District of Columbia	4.171	District of Columbia	-0.183	Michigan	-0.126
II more U//114 II more Microsom 0.414 II more Maximum 0.416 Manufant Hawei 0.416 Tone Tones 0.461 Tone Watersite 0.462 Control Watersite 0.462 Control Mercin 0.402 Control Mercin 0.403 Variant Mercin 0.403 Variant	1/270- uod	Maryerd	-0.201	Maryerd	-0.200	Maryler d	611.)-
Michigan 0.416 Maryand - Hawai 0.416 VanYand - Tapas 0.462 Toran - Tapas 4.462 Correction - Norm - 0.478 Vortection - Norm - 0.476 Nebraska -	NR71- 5	EICH	-0.292	and I	-0.473	Reuli	TEPTY
Havai 0.441 Toas Taas 0.482 Tons W.consin 0.492 Correctout The 16 T1 W.consin 1 Nebrasia 0.562 Nebrasia	nd 4.200	Ohio	-4.265	Wash uglor	-0.279	Connecticu:	-0.259
Tubes - 4.482 2110 - W scensin - 4.492 Corrections - W scensin - 4.192 Corrections - N scensin - 4.192 Corrections - N scensin - 4.192 Vareach - N scensin - 4.192 Vareach -	107.1	Connectiou:	4.175 1	Connectiou:	-0.366	Wash nglor-	10.001
W acensin - 4.495 Connecticut - OMin - 4.617 W ansmith - Nebraska - 0.566 Vebraska -	-6.202	Wash igor	-4.252	ohlo	-0.250	Texas	-0.230
Zhin 4. 517 W. transin Nebrasias -0.566 Vebrasias -	iout -4.303	Teas	627	Teas	-0.309	otto	-C.307
Nebreska -0.560 Vebreska	kina - e avia	W wrondn	-6 %C	W scenelin	682 U-	W vraneln	-f 410
	ika -4.402	Vebreska	-4/45	diebreska	101/0-	Cal forn a	-0.415
Calterna -0.205 Calterna -		Calhana	-4.615	Caltorna	-0.617	Neorada	-0.416

Table 4. Random Effects Estimates by State (Ordered) for Multilevel Logistic Regression Models of Non-Enrollment to Enrollment, Mexican Origin 15-17 Year-olds, 2005-2009 ACS.

(Table 4 Cont'd.)

0.292	Culiforn a	1111-1	Culifornia	-0.A26	Californ a	-0.496	Cultorna
0.280	Arkenses	9.384	Nebreska	-0.415	Nethers skin	-0.130	Nebreska
-0.211	W sconshr	6350 9	W scensh	0.348	W scensin	-0.332	W scenain
610	Maryland	6.27	lear	0.179	Textee	262.0-	Terxad
921-57 7	Ditach mehors	1077-17	Wash rigion	122.0	Dita da matema	0.305 U	UDIFICTION
819 9	Texas	0.218	Connection	-0.226	Connecticut	0216	oțio
11.17	Natrasa	9.208	Maryland	087.0-	1 mota	181'0-	Inda
6157	Arleona	-0.207	ll mala	0.178	CB1	92T'O	Can
10.L37	North Carolina	181.0-	Month Carolina	E21.0-	Maryand	NCT-D-	Maryland
-0.L36	Correcticut	-0. LGS	District of Columbia	-0.154	North Carol Ira	-C.163	North Carol rea
-C.131	Michigan	-0.133	Utan	-0.152	District of Columbia	-0.153	District of Columbia
-0.117	Harwaii	-0.132	Temessee	6F1.0-	Minesota	TML0-	Min resolut
6.LIM	Indana	6.128	Artenues	-C.128	South Dakota	-стри	South Darweta
-0.097	District of Columbia	-0.123	Minneuote	-0.122	Terressee	-0.138	Terressee
-0.085	Nevaca	-0.11M	Sauth Dekota	-0.122	Arkenses	-0.117	Arkenses
0.084	New Medico	-0.105	Michigan	-0.11A	ewa	0.103	awo
60.05	Aluda	980.0	lown	-0.100	Preiana	-0.0 0 8	Hreali
920.0	Inda	-0.087	halane	-0.085	Maine	-0.0 0 1	Pictane
0.020	South Devota	-0.078	Maine	-0.085	Michigan	0.063	Maine
-0.067	Maine	120.0-	Havvaii	0.080	Hrnei	1000-	Arizona
9007	Westmine	607	Ada ska	-0.07L	Alasion	6000	Auton Auton
200	Oklahoma	69 J	Oklaho na	-0.056	Ottahoma	800	New Hampah re
6705	New Hamoshire	1.025	Geergja	120.0-	New Hambah re	TMO.D	Oldehoma
0.020	Louislana	-0.017	Artzonia	-0.017	Wycaming W	1000	Vermont
-0.015	Tennessen	0.010	Vermont	-0.011	Vermont	-0.003	Wyeming
0.012	Missies co	00.0	Wemine	0.025	New Mexico	0030	New Modeo
000	Varmort	0.035	Rhoge Island	0.036	Rroot Island	0.035	Georgia
1000	Merefrana	0.001	the structure the filmed are	0.043		0.035	Decembra in a
0000	Min waarta	1000	Names pp	0.050	Minima Minima		Minutana
0.050	South Carolina	0.065	Louisiana	0.096	Karout.	0105	Massachusartta
0.051	св,	0.083	Monta va	0.056	Pen neyhanla	0.105	Kansas
0.051	Georgia	56010	Pennaghenia	0.107	Meesech usefts	0111	Pennsylvenia
0.056	Pennsylvenia	0.100	Delanare	0.115	Mitsuiss pp	0.116	Nevaca
0.060	West Ving nia	0.109	Massachusetts	0.117	Delamare	0770	Delavvare
0.061	Delavere	ollē	Karous	0.119	Louista	0126	Missis pp
0100	Manuachuran Mu	0120	West Visa nue	0.137	West View rds	0127	West View rule
0.115	North Darcota	0.184	Nevace March Decree	0.160	Oragon	0.165	Drigon
0.18/1	Kentursy	0.185	New York	0.177	North Dakota	0178	New York
0.190	Alabama	0.199	Oregon	0.216	New York	0.130	North Dakota
0.200	New York	0.225	Virginia	0.238	ldano	0.247	ldano
0.205	Karata.	0.247	Kentucky	0.241	Kerrusy	0.245	Kertturky
0.238	Missouri	0.275	daro	0.256	Virginia	0.258	Maginia
0.262	ctaro	0.298	Alaberne	0.268	Colorado	0,269	Colorado
0.281	Media	0307	Colorado	0.345	Alabeme	0.357	Alabeme
0.32/	Florida	0.369	Missouri	0.378	Missouri	0.396	Missouri
0.325	Colorado	9-01	NewJersey	0.420	New Jersey	550	New Jersey
0.431	New Jersey	0.512	Florida	0.578	Florida	0.5HE	Florida
Model 9	State	Model 8	Scare	Model 7	State	Model 6	Statle

Figure 1. State Random Effects Estimates (Ordered) and 95% Confidence Intervals from Tables 3 and 4. Model 1 (gray) controls only for age and sex, and Model 2 (black) controls for age, sex, and immigrant generational status.

Figure 1 compares the ordered state random effects in Model 1 (gray) and Model 2 (black). For most states, the absolute value of the state's random effect estimate shrinks towards the overall mean of the state means (zero, in red) from Model 1 to Model

2. In Model 2, Alabama and New Jersey continue to have larger positive random effects than other states, but are now joined by Florida, Missouri, and Nevada (see Figure 2 and Table 4). These high and low deviations cannot be fully explained by compositional differences in the generational status of the Mexican origin population across states.

Figure 2. State Random Effects Estimates (Ordered) and 95% Confidence Intervals from Tables 3 and 4. Model 2 (black) controls for age, sex, and immigrant generation. Model 4 (blue) controls for all individual-level covariates.

The overall variance in the state intercepts is fairly stable across Models 2, 3, and 4 (approximately .9). Figure 2 contrasts the state random effects from Model 2 (black), which controls for age, sex, and immigrant generation, and Model 4 (blue), which controls for all individual-level covariates. This figure demonstrates that the state random effects are similar for both models. While factors such as parental education, family status, central city status, and mobility are significant predictors of school non-enrollment among the overall Mexican origin population, they do not substantially reduce between-state variation in non-enrollment above and beyond immigrant generational status. This could be due to a lack of variation in patterns of Mexican origin parental education, family status, and mobility across states, net of immigrant generational status.

In Models 5-7, I add state-level immigration history variables to the model that controls for all individual-level covariates (Model 4). I first control for percent foreignborn in the state in 1990, then for the percent foreign-born growth from 1990-2010, and then for the two variables together. These models yield surprising results. The percent foreign-born in the state in 1990 and the percent foreign-born growth rate in the state from 1990 to 2010 do not have significant effects on the overall likelihood of Mexican origin non-enrollment, net of compositional factors. Together, these variables do not substantially reduce the between-state variance in the log odds of non-enrollment. The state variance parameter decreases from .095 in Model 4, to .084 in Model 7. Thus, variables related to a state's immigration history are not significant predictors of non-enrollment among Mexican origin adolescents, and they do not explain much of the between-state variance in Mexican origin non-enrollment. Similarly, the percent NH Black peers in the state (Model 8) does not appear to significantly influence the

likelihood of non-enrollment, nor does this variable noticeably reduce between-state variation in Mexican origin non-enrollment.

Figure 3. State Random Effects Estimates (Ordered) and 95% Confidence Intervals from Tables 3 and 4. Model 4 (blue) controls for all individual-level covariates. Model 9 (green) controls for all individual-level and state-level covariates.

The percent of NH White 15-17 year-olds in the state that are not enrolled in school is the only state-level characteristic that has a significant, positive effect on the likelihood of Mexican origin non-enrollment. Net of compositional characteristics, immigration history, and peer composition, Mexican origin adolescents who live in states with higher percentages of NH White peer dropouts are more likely to be non-enrolled in school. However, the level of NH Black non-enrollment in the state does not operate in the same way; the percent NH Black non-enrollment is not a significant predictor of Mexican origin non-enrollment.

Controlling for NH White peer non-enrollment and NH Black peer nonenrollment together reduces the between-state variance by a noticeable amount (from .080 in Model 8 to .056 in Model 9). Figure 3 also shows that controlling for all statelevel covariates (green) shrinks the absolute values of the random effects parameters for most states towards the mean, to a greater extent than the model that only controls for individual-level characteristics (blue). However, the addition of state-level covariates does not improve the model fit. The best-fit model (the model with the lowest BIC) is Model 4, which only controls for individual-level predictors.

Overall, these results show that factors related to the composition of the Mexican origin population, particularly immigrant generational status, account for some of the between-state variation in Mexican origin non-enrollment. An assessment of state-level variables further reveals that the educational context of a state appears to influence both the likelihood of Mexican origin non-enrollment and between-state variance in non-enrollment. In contrast, variables related to a state's immigration history, such as the percent foreign-born living in the state in 1990 and the percent foreign-born growth rate

in the state from 1990 to 2010, do not have significant effects on Mexican origin nonenrollment, and do not appreciably reduce between-state variation in Mexican origin nonenrollment, net of compositional factors. These findings suggest that the school dropout patterns of NH White adolescents within the state serve as key indicators of the overall quality of the education system. Some Mexican origin adolescents that are exposed to these poor-quality education systems are at greater risk of school dropout than their peers in other states.

Conclusion

The emergence of new immigrant destinations has coincided with a proliferation of studies seeking to compare immigrant outcomes across contexts. This wave of studies relies heavily on the use of destination typologies, which place destinations into categories based exclusively on variables related to immigration history. I have argued in this paper that the use of destination typologies prevents the effective generalization of results across studies. In this paper, I have attempted to demonstrate the utility of a multilevel approach to analyzing immigrant outcomes across destinations, by studying variations in levels of Mexican origin non-enrollment across states. My findings show that variables related to a state's immigration history do not influence between-state variation in non-enrollment to the same extent as individual-level compositional factors, such as immigrant generation, and the educational context within the state, as measured by the percent of NH White 15-17 year-olds who are not enrolled in school. These findings suggest that scholars should not automatically assume that a destination's immigration history is the most salient determinant of between-destination variations in outcomes relevant to immigrant assimilation, such as school non-enrollment.

I have advocated for the use of multilevel modeling in the study of variations in outcomes across immigrant destinations. However, multilevel modeling may not be appropriate for all circumstances. Multilevel models require the use of nested data. This type of data may not be available, and multilevel analysis may not be appropriate for the unit of analysis or dependent variable of interest. Still, I would argue that, even in standard OLS regression models, researchers should not begin the analysis by creating destination typologies, but rather should introduce variables related to immigration history into the models as covariates. In this way, researchers can evaluate whether immigration history variables play a significant role in predicting the outcome of interest relative to other factors.

There are several limitations to the analysis presented in this paper. First, I did not find that immigration history variables related to destinations (states) had significant effects on Mexican origin non-enrollment, nor on between-state variation in nonenrollment. This could be due to the fact that I measured immigration history using the presence of the foreign-born population within the state in 1990, and foreign-born growth rates from 1990 to 2010. These results may have been different if I had focused specifically on the presence and growth of the co-ethnic (Mexican origin) population within the state. The historical presence of co-ethnics may have a greater influence on outcomes such as school non-enrollment than the historical presence of all foreign-born individuals. Second, while I have highlighted variation in Mexican origin nonenrollment rates across states, the state may not be an important sphere of influence for immigrant origin individuals. Institutional arrangements at lower levels of geography may have a greater impact on the outcomes of immigrants and their families. Future

analyses should attempt to measure contextual variables within smaller geographic units of analysis, such as the Public Use Microdata Area (PUMA) or county. Finally, Mexican origin adolescents living in California and Texas dominate the 2005-2009 ACS sample. This could suppress the overall level of variation in non-enrollment outside of these states. To circumvent this challenge, future work could divide these states into smaller geographic units, as suggested above, or omit these states from the analysis altogether.

WORKS CITED

- Blau, P. M., & Duncan, O. D.,. (1967). *The American occupational structure*. New York: Wiley.
- Donato, K. M., Tolbert, C., Nucci, A., & Kawano, Y. (2008). Changing faces, changing places: The emergence of new nonmetropolitan immigrant gateways. In D. S. Massey (Ed.), New faces in new places: The changing geography of American immigration (pp. 75-98). New York, NY: Russell Sage Foundation.
- Duncan, O. D., Featherman, D. L., & Duncan, B. (1972). Socioeconomic background and achievement. New York: Seminar Press.
- Fischer, M. J. (2010). Immigrant educational outcomes in new destinations: An exploration of high school attrition. *Social Science Research*, *39*, 627-641.
- Fischer, M.J., & Tienda, M. (2006). Redrawing Spatial Color Lines: Hispanic Metropolitan Dispersal, Segregation, and Economic Opportunity. In M. Tienda & F. Mitchell (Eds.), *Hispanics and the Future of America* (pp. 100-137). Washington, D.C.: The National Academies Press.
- Gouveia, L., Carranza, M. A., & Cogua, J. (2005). The Great Plains migration: Mexicanos and Latinos in Nebraska. In V. Zúniga, & R. Hernández-León (Eds.), New destinations: Mexican immigration in the United States (pp. 23-50). New
- Hauser, R. M. (1995). "Better rules for better decisions" (an invited commentary on Adrian E. Raftery, "Bayesian model selection in social research") In P. V. Marsden (Ed.), *Sociological methodology 1995* (pp. 175-183). Cambridge, MA: Basil Blackwell.
- Hardwick, S.W. (2008). Toward a suburban immigrant nation. In A. Singer, S. W. Hardwick & C. B. Brettell (Eds.), *Twenty-first century gateways: Immigrant incorporation in suburban America* (pp. 31-50). Washington, D.C.: Brookings Institution Press.
- Hernández-León, R., & Zúñiga, V. (2005). Appalachia meets Aztlán: Mexican immigration and intergroup relations in Dalton, Georgia. In V. Zúñiga, & R. Hernández-León (Eds.), New destinations: Mexican immigration to the United States (pp. 244-275). New York NY: Russell Sage Foundation.
- Hirschman, C. (1994). Problems and prospects of studying immigrant adaptation from the 1990 population census. *International Migration Review*, *28*(4), 690-713.
- Hirschman, C. (2001). The educational enrollment of immigrant youth: A test of the segmented-assimilation hypothesis. *Demography*, *38*(3), 317-336.
- Kao, G., & Thompson, J. S. (2003). Racial and ethnic stratification in educational achievement and attainment. *Annual Review of Sociology, 29*, 417-442.

- Kandel, W. & Cromartie, J. (2004). New patterns of Hispanic settlement in rural America. U.S. Department of Agriculture, *Rural Development Research Report* (99). Retrieved 3/15/2012 from http://www.ers.usda.gov/publications/rdrr99/rdrr99.pdf.
- Kasinitz, P., Mollenkopf, J. H., Waters, M. C., & Holdaway, J. (2008). *Inheriting the city: The children of immigrants come of age*. New York NY: Russell Sage Foundation.
- Landale, N. S., Oropesa, R. S., & Llanes, D. (1998). Schooling, work, and idleness among Mexican and non-Latino white adolescents. *Social Science Research*, 27, 457-480.
- Lichter, D. T., Parisi, D., Taquino, M. C., & Grice, S. M. (2010). Residential segregation in new Hispanic destinations: Cities, suburbs, and rural communities compared. *Social Science Research*, 39, 215-230.
- Massey, D. S., & Capoferro, C. (2008). The geographic diversification of American immigration. In D. S. Massey (Ed.), *New faces in new places: The changing* geography of American immigration (pp. 25-50). New York, NY: Russell Sage Foundation.
- McLanahan, S. S. (1985). Family structure and the reproduction of poverty. *American Journal of Sociology, 90*(4), 873-901.
- Oropesa, R. S., & Landale, N. (2009). Why do immigrant youth who never enroll in U.S. schools matter? School enrollment among Mexicans and non-Hispanic whites. *Sociology of Education*, 82, 240-266.
- Park, J. & Iceland, J. (2010). Residential segregation in metropolitan and established immigrant gateways and new destinations, 1990-2000. *Social Science Research* 40(3).
- Parrado, E. A., & Kandel, W. (2008). New Hispanic migrant destinations: A tale of two industries. In D. S. Massey (Ed.), New faces in new places: The changing geography of American immigration (pp. 99-123). New York, NY: Russell Sage Foundation.
- Perlmann, J. (2005). Italians then, Mexicans now: Immigrant origins and secondgeneration progress, 1890 to 2000. New York, NY: Russell Sage Foundation.
- Perreira, K. M., Harris, K. M., & Lee, D. (2006). Making it in America: High school completion by immigrant and native youth. *Demography*, 43(3), 511-536.
- Portes, A., & Rumbaut, R. G. (2001). *Legacies: The story of the immigrant second generation*. Berkeley, CA: University of California Press.

- Portes, A., & Rumbaut, R. G. (2006). *Immigrant America: A portrait* (3rd ed.). Berkeley, CA: University of California Press.
- Portes, A., & Zhou, M. (1993). The new second generation: Segmented assimilation and its variants. Annals of the American Academy of Political and Social Science, 530, 74-96.
- Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111-163.
- Reeves, E. B., & Bylund, R. A. (2005). Are rural schools inferior to urban schools? A multilevel analysis of school accountability trends in Kentucky. *Rural Sociology*, 70(3), 360-386.
- Rumbaut, R. G. (2004). Ages, life stages, and generational cohorts: Decomposing the immigrant first and second generations in the United States. *International Migration Review*, 38(3), 1160-1205.
- Rumberger, R. W., & Palardy, G. J. (2005). Test scores, dropout rates, and transfer rates as alternative indicators of high school performance. *American Educational Research Journal*, 42(1), 3-42.
- Ruggles, S. J., Alexander, T., Genadek, K., Ronald Goeken, R., Schroeder, M. B., & Sobek, M. (2010). *Integrated public use microdata series: Version 5.0*. Minneapolis, MN: University of Minnesota.
- Rumberger, R.W. (2004). Why students drop out of school. In G. Orfield (Ed.) *Dropouts in America* (pp. 131-156). Cambridge: Harvard Education Press.
- Sandefur, G. D., Mclanahan, S., & Wojtkiewicz, R. A. (1992). The effects of parental marital status during adolescence on high school graduation. *Social Forces*, 71(1), 103-121.
- Singer, A. (2004). The rise of new immigrant gateways. Brookings: Center on Urban and Metropolitan Policy. Retrieved 2/1/2012 from <u>http://www.brookings.edu/~/media/Files/rc/reports/2004/02demographics_singer/2</u> 0040301 gateways.pdf
- Singer, A. (2008). Twenty-first century gateways: An introduction. In A. Singer, S. W. Hardwick & C. B. Brettell (Eds.), *Twenty-first century gateways: Immigrant incorporation in suburban America* (pp. 3-30). Washington, D.C.: Brookings Institution Press.
- Smith, R. C. (2006). *Mexican New York: Transnational lives of new immigrants*. Berkeley, CA: University of California Press.
- Waters, M. C., & Jimenez, T. R. (2005). Assessing immigrant assimilation: New empirical and theoretical challenges. *Annual Review of Sociology*, *31*, 105-25.

- Wojtkiewicz, R. A., & Donato, K. M. (1995). Hispanic educational attainment: The effects of family background and nativity. *Social Forces*, 74(2), 559-574.
- Zhou, M. (1997a). Growing up American: The challenge confronting immigrant children and children of immigrants. *Annual Review of Sociology, 23*, 63-95.
- Zhou, M. (1997b). Segmented assimilation: Issues, controversies, and recent research on the new second generation. *International Migration Review*, *31*(4), 975-1008.
- Zsembik, B.A. & Llanes, D. (1996). Generational differences in educational attainment among Mexican Americans. *Social Science Quarterly*, 77(2), 363-374.

Appendix

Table Al.	Mean	Individual-le	evel Charact	eristics of	f Mexic	can Origin	, NH	White,	and
NH Black	15-17	Year-olds, 20	005-2009 AC	S.					_
									-

	Mexican		
	Origin	NH White	NH Black
<u>Demographics</u>			
Age	16.0	16.0	16.0
Female (%)	48.4	48.6	45.8
Male (%)	51.6	51.4	50.2
Household Family Status			
No parents in HH (%)	8.9	4.6	12.1
Intect (Mother and Father) (%)	60.3	70.4	31.8
Mother, no Father (%)	24.3	18.4	49.6
Father, no mother (%)	6.6	6.6	6.5
Immigrant Status, Citizenship, Mobility			
1.25 Generation (%)	4.4	0.4	1.1
1.5 Generation (%)	8.7	0.9	2.0
1.75 Generation (%)	8.1	1.3	1.6
Native-born (%)	78.8	97.4	95.3
Non-sitizen (%)	18.4	1.1	2.7
Recent mobility (in last year) (%)	13.9	9.4	16.9
Metropolitan Status			
Central City (%)	20.9	7.0	31.5
Non-metropolitan (%)	9.5	20.2	10.8
Other (other metro or not identifiable) $(\%)$	69.6	72.8	57.7
Poverty Status			
Below Poverty (%)	25.9	9.4	25.8
1-2x Poverty Threshold (%)	32.3	14.5	26.8
2x + Poverty Threshold (%)	41.8	76.2	43.4
Highest Parental Educational Attainment			
No parental or householder record (%)	0.4	0.2	0.4
Less than HS (%)	40.6	4.8	14.4
HS Degree or GED (%)	25.8	22.4	31.3
Some College (%)	17.3	22.4	26.8
AA (%)	5.7	11.5	9.7
BA (%)	7.0	22.4	11.2
BA + (%)	3.2	16.3	6.1

*Percentages are weighted using the person weights provided by the IPUMS ACS dataset.

Manual Provincing Manual Man		Fora gr- 80 т. (FB) (haractaristics: 1990	Peer Compos	lition (15-17 year-plo:	s): 2005-2009	Educ	ationa Context: 2001	5-2009	
Mellen 11 550 929 313 256 640 640 640 640 641 </th <th></th> <th>Revert: Fornign Borr: 1990</th> <th>Perrent FB Greath 1990-2010</th> <th>Percent: NH Wh ter 15-17 Year-olde: 2005-2009</th> <th>Parca w NH Black 15-17 Year-olds: 2005-2005</th> <th>Percent: Ladrio 15- 17 Year-olds: 2005- 2009</th> <th>Percent Acuts (ages 25-6-1) with Less then a HS Degree: 2005-2009</th> <th>Percent Scrool Ner-Encliment Among NH- White LS-17 year-olds</th> <th>Percent Scrool Nor-Enroliment Among N Black 15- 17 veer plos</th> <th> State Population Total: 2005-2005 </th>		Revert: Fornign Borr: 1990	Perrent FB Greath 1990-2010	Percent: NH Wh ter 15-17 Year-olde: 2005-2009	Parca w NH Black 15-17 Year-olds: 2005-2005	Percent: Ladrio 15- 17 Year-olds: 2005- 2009	Percent Acuts (ages 25-6-1) with Less then a HS Degree: 2005-2009	Percent Scrool Ner-Encliment Among NH- White LS-17 year-olds	Percent Scrool Nor-Enroliment Among N Black 15- 17 veer plos	 State Population Total: 2005-2005
Anisa 51 971 753 32 371 67 66 115 66 Anisa 11 971 753 12 753 137 66 137 67 67 137 66 137 67 66 137 67 67 67 67 67 67 67 <	Alabame	17	205.0	62	31.5	26	150	9	417	AGE EE3.A
Muture 18 313 7.3 8.4 3.13 7.3 5.3 7.3 5.3<	Maska	8	T <i>16</i> 5	57.8	32	5	3	8	11.76	683,142
Memory 11 31/7 70.3 55.6 61.7 25.6 76.3 35.4 Oliformic 13.5 30.3 55.5 13.6 37.7 56.6 76.8 56.3 Oliformic 13.5 30.3 37.3 56.5 14.7 37.7 56.7 56.43.1 Determic 13.5 37.3 56.5 14.7 37.5 56.7 56.3 Determic 31.3 37.3 56.7 37.3 56.7 57.3 57.7	Artisona	96 90	151.3	47.6	42	37.7	8.7	£1.¥	an rri	6,324,865
Clinent 211 253 813 161 214 254 8430.27 Clinent 211 253 813 161 214 254 8400.27 Cherrenter 113 203 823 213 203 213 213 213 213 213 214	Arkenses	3.6	314.7	20.3	<u>19.6</u>	62	N.EC	2 53	4.62	2,838,143
Control 55 200 65 45 23 200 45 37 460 443411 Control 15 200 65 15 200 65 37 460 443411 Control 164 270 200 200 27 460 443411 Control 360 370 200 200 27 240 2	Californ a	TEZ	555	34.3	63	44.3	80	第2	23	36,308,527
III.3 BG3 T13 T34 T34 <tht34< th=""> <tht34< td="" th<=""><td>Colorado</td><td>5.5</td><td>210.5</td><td>998</td><td>46</td><td>23.6</td><td>6.1</td><td>3.77</td><td>4.06</td><td>4,843,211</td></tht34<></tht34<>	Colorado	5.5	210.5	998	46	23.6	6.1	3.77	4.06	4,843,211
Determine 44 379.3 320 230 320 320 420 320 630 Determine 46 370.4 320 320 321 320 640 450 450 640 Determine 350 330.4 320 320 320 320 320 450 450 450 450 450 Determine 350 370 320 321 320 321 320 450 <td>Connecticut</td> <td>115</td> <td>803</td> <td>58</td> <td>11.3</td> <td>54.8</td> <td>83</td> <td>2.18</td> <td>517</td> <td>3,494,487</td>	Connecticut	115	803	58	11.3	54.8	83	2.18	517	3,494,487
District Curula 203 201 110 760 0 634 300 Rouging 36 374 210 730 314 316 314 306 Rouging 36 344 235 234 235 234 324 324 Rouging 36 344 235 234 334 324 324 334 Rouging 36 373 364 334 335 334	Delaware	4.6	564T	62.0	** 10	en iki	06	4.27	29 29 20	863,832
Finding 350 3203 <	District of Columbia	20.8	N92	110	6.97	en acj	10.0	0	Æ	566,433
General 36 364<	Florida	15.0	00T	623	20.3	172	96	4.69	4.84	38,222,420
Reval 273 9/4 133 21 9/4 133 21 9/4 133 <td>Georgia</td> <td>w ni</td> <td>F156</td> <td>52.6</td> <td>N SS</td> <td>44</td> <td>12.4</td> <td>1980 m</td> <td>£4</td> <td>9,497,723</td>	Georgia	w ni	F 1 56	52.6	N SS	44	12.4	1980 m	£4	9,497,723
Attract 34 773 813 713 813 713 813 713 813 713 813 713 813 713 813 713 813 713 813 713 813 713 813<	Harwall	17.6	46.4	*5	21	20.5	4.6	5.79	4.55	1,280,241
Interfact 2.4 77.2 2.61 77.2 2.61 7.72 2.64 7.74 2.64 7.69 2.7366 Delay 2.30 2.733 86.5 5.0 4.65 6.10 2.64 4.55 2.7376 Delay 2.30 2.733 86.5 5.0 5.0 5.34	ldaro	w.	197.3	\$1.9	0.4	977	2.7	3,72	4.76	1,492,573
Contract 23 3773 865 302 55 61 364 63 64 44 534 634 Constant 33 366.2 366.2 366 366 366 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 56 57 56 57 56 57 56 57 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56	IIrreis	76	772	1.82	2°87	17.0	2.7	242	8	12,785,043
Demo 2.0 17.3 9.65 5.7 0.55 5.1 2.37 2.36 2.37 2.36 2.37 2.37 3.36 2.37 3.36 3.	Picking	ñ	2705	80.6	10.2	रू जा	20.6	4.14	\$3I	6,342,469
Remean 3.2 3.66. 5.7 3.06 6.7 3.70. 5.70.	lown.	5.0	E871	小頭	30	45	6.1	6) fi	2%	2,978,880
Control 14 2/163 8/56 9.0 2/3 14 2/163 6/51 1/2 <th< td=""><td>far reas</td><td>C1 10</td><td>165.2</td><td>76</td><td>5</td><td>20.5</td><td>6.4</td><td>727</td><td>521</td><td>2,777,835</td></th<>	far reas	C1 10	165.2	76	5	20.5	6.4	727	521	2,777,835
Container 2.6 807 913 85.5 31 5.0 4.05 5.35 4.11.156 Container 1.7 3.11.1 5.0 4.05 5.35 5.41.156 5.33 5.41.156 Winder 1.7 3.11.1 5.0 4.05 5.35 5.41.156 5.33 5.41.156 5.33 5.41.156 5.33 5.41.156 5.33 5.41.156 5.33 5.41.156 5.33 5.41.156 5.33 5.41.156 5.33 5.41.156 5.41.66 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156 5.41.156	Kernuck	1.4	246.8	5 <u>1</u> 2	56	50	14.9	4.43	4.51	4,252,000
Merilian 70 710 91.8 1.5 1.0 91.8 1.5 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 91.6 1.0 </td <td>Louisia va</td> <td>56</td> <td>80.7</td> <td>×2</td> <td>មាន</td> <td>15</td> <td>36.0</td> <td>189</td> <td>526</td> <td>4,411,546</td>	Louisia va	56	80.7	×2	មាន	15	36.0	1 89	526	4,411,546
Merylamid 77 14/1 9/0 223 16/4 8.3 26.2 403 63.1.173 Merylamid 7.7 14/1 9/0 223 16.4 8.3 26.2 403 63.1.173 Merylamid 17.7 14.1 9/0 22.3 13.5.1 9/0 22.3 201 9.0 5.0	Maina	4.0	Q.	31%	51 eff	an M	63	415	5.00	1,316,380
Montendinerse 11.7 61.6 7.41 7.3 11.6 6.5 5.5 6.51 7.03 6.51 Montenpic 2.3 3.65 3.65 4.73 5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.512.540 Montenpic 2.1 3.65 4.91 6.61 6.61 6.61 6.61 6.61 5.61 5.512.540 Montenpic 2.1 3.65 9.65 9.65 5.61 5.512.540 5.61 5.512.540 Montenpic 2.1 3.65 9.65 9.1 9.1 5.61 5.512.540 5.61 5.512.540 Montenpic 2.31 9.61 9.1 3.1 6.61 4.65 5.515.760 5.613.760 Montenpic 2.31 9.31 8.1 6.21 6.21 4.65 5.515.760 5.613.760 Montenpic 2.03 5.61 3.61 3.61 3.72	Maryland	2.7	141.1	510	32.8	e d	83	3,98	405	5,637,/18
Moriegen 44 523 720 523 49 87 235 503 2033-208 Moriegen 33 136.1 136.3 136.1 136.1 453 561 2136-33 Moriegen 13 137.7 503 443 5	Measech use the	117	61 6	NN.	E7	11.6	52	7972	493	6,511,176
Masserie 3.3 105.1 81.2 4.3 2.07 5.05 2.03 5.76 5.77 10.6 7.72 10.72<	Michigen	4.4		220	18.2		52	351	803	302,050,000
Missenis pp 11 137/1 Number Name 21 137/1 Number Name 23 137/1 Number Name 23 137/1 Number Name 23 137/1 Number Name 23 137/1 Number Name 137/1 Number Name 137/1 Number Name 137/1 Number Name 137/1 137	Minnesota		185.1	515	n (4.4	45	507	3	5,166,581
Ministration Z 110 217 110 217	Masika pp		/JFE	207	44.8	7	2.01	7	λ.	0077757
Montana Z Z Montana Z <thz< th=""> Z <thz< th=""> Z<</thz<></thz<>	Missouri	5	1951	22	5 H	2	201	24	¢ ;	5,504,382
Mervaler 2.3 2.37.4 8.11 5.55 8.23 1.72.14 7.33 1.72.14 New levery 36.3 46. 56.1 56.3 46. 255.743 New levery 53.1 49.1 53.5 49.1 53.5 49.6 2.15.743 New levery 53.1 137.5 53.5 49.1 51.7 0. 1.35.749 New levery 53.1 53.6 53.0 137.3 53.9 2.7 0. 1.35.749 New levery 53.1 53.0 53.1 53.0 53.1 2.35.4 4.66 2.55.743 New levery 53.1 53.0 53.1 53.1 53.7 54.65 55.743 New lever 23.1 56.1 56.1 56.1 56.73 56.73 New lever 23.1 56.1 56.1 56.1 56.1 56.57 56.745 New lever 23.1 56.1 56.1 56.1 56.1 56.745 56.7	Montana	ni i	48	82.6	96	m	88	97.9	672	356,257
Nervensite JU,1 545.0 31.4 31.4 54.1 54.0 21.4 74.6 2.43.4 New Nerror 13.2 76.6 13.7 13.5 13.7 0 14.7 6.6 2.43.4 New Nerror 13.2 76.6 13.7 5.3 17.1 6.3 2.31 4.77 0 13.7 3.66 3.43.5 New Nerror 13.3 27.6 13.7 6.3 2.31 4.77 0 13.7 3.66 3.45.6 New Nerror 2.33 2.31 2.7 0.3 3.23 4.77 0 13.66 3.45.7 New Nerror 2.33 2.31 2.6 3.31 2.7 0 3.73 3.47.3 3.660.48 New Nerror 2.35 4.37 2.36 3.31 2.6 4.37.3 3.660.48 3.43.73 New Nerror 2.31 2.5 3.4 2.4 2.7 0 4.7 2.466.46 3.560.43	Nebraia	3	2.57.4	1.18	5	er i	3	81		1,772,124
New Formania R <t< td=""><td>Nevada</td><td></td><td>4,545</td><td>184</td><td>2 F 4</td><td>51.5</td><td>e s</td><td>5.42</td><td>\$,</td><td>2,5415, As5</td></t<>	Nevada		4,545	184	2 F 4	51.5	e s	5.42	\$,	2,5415, As5
Mark Mark J.J. M.S. J.J. M.S. J.J. M.S. J.J. M.S.		9.6 2 - 12	B	076		11	3 (22	5	SEP/SIST
New York Oct State State <t< td=""><td>New Jurishy New Meeting</td><td></td><td>8.07</td><td>***</td><td>4 F</td><td>217</td><td>19.5</td><td>16.5</td><td>174</td><td>overuse's</td></t<>	New Jurishy New Meeting		8.07	***	4 F	217	19.5	16.5	174	overuse's
Number Number 200 2011 2011	New muchture New York	r is	10/17	2070	17.2	0.25	0.00	150	6 4 P 6	Active and
North Marching Za Sale	Name Condina	di e	1007	2 5	84		4	#);j	200	000 CALVER
Ohle 2.9 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/8 7/1 2.0 9.9 3.26 3.15.11,85 3.15.11,85 Oblehorma 2.3 137.3 6/1.2 8.9 10.9 3.92 2.68 3.61.073 Orgen 4.1 8.77 75.8 13.7 67 3.82 3.61.7 3.77.07 Privelyonia 4.1 8.77 75.8 13.4 5.0 3.93 3.68 3.61.7 3.75.707 Privelyonia 4.1 8.77 7.8 13.6 5.6 3.61 4.01.6687 SouthGrowine 1.6 3.66 1.1 3.7 2.66 3.7 4.01.6687 SouthGrowine 1.6 3.15 3.1 3.7 3.8 3.66 4.01.6687 SouthGrowine 1.6 3.15 3.61 4.11.687 3.66 4.01.687 SouthGrowine 1.6 3.1	North Davres		PO9	1.58	100	a n	241	28.9	5 10 6 10	CA15145
Oklainera Z.a 170.5 17.1 8.9 3.0.3 3.0.2 2.68 3.61.0/73 Priveymin 4.1 3.15.7 76.1 2.0 13.4 7.0 4.65 2.64 3.61.0/73 Priveymin 4.1 3.15.7 76.1 2.0 13.4 7.0 4.65 3.61 3.61.0/73 Priveymin 4.1 3.15.7 7.63 2.63 3.61 3.61 3.61 3.61.3 3.61.4 3.65.7 3.61.4 3.66.7 3.61.4 3.66.7	Ohlo	en N	99 V.	*2	14A	Dri	66	料	85	31.513,858
Oregent 5.7 15.7 76.1 2.0 1.4 7.0 4.66 0.74 3.727.407 Proce ballend 0.84 3.82.7 76.1 2.0 1.4 7.0 4.66 0.74 3.727.407 Proce ballend 0.83 4.4.1 7.8.5 1.3.3 2.66 3.81 3.4.16.567 Proce ballend 0.05 4.1.2 7.2.3 1.3.5 2.66 3.81 3.61 4.416.567 Surth Develor 1.6 0.43 2.57.2 2.51.2 2.51.2 2.51.696 7.86 3.81 4.01.6567 Surth Develor 1.6 0.43 3.2.2 1.2.5 2.51.696 7.81.696 7.81.696 Remease 1.7 3.12 2.12 1.13 3.66 3.53 3.69 6.14.6567 Remease 1.7 3.12 2.11 3.13 3.67 2.61.8675 6.81.667 Remease 1.1 2.13 3.61 3.66 3.67 2.61.8675 2.81.9642 </td <td>Oklahoma</td> <td>90</td> <td>5071</td> <td>517</td> <td>00 40</td> <td>en sý</td> <td>20.9</td> <td>16.5</td> <td>787</td> <td>3,610,073</td>	Oklahoma	90	5071	517	00 40	en sý	20.9	16.5	787	3,610,073
Perverventa 4.1 86.7 76.8 21.3 6.0 8.3 3.82. 3.82. 2.15.6,56 Proceebind 2.08 4.3.4 7.28 6.7 15.3 3.85 3.81. 1.057.301 South Decrete 2.08 2.14 7.28 6.7 15.3 3.64 1.05.7301 South Decrete 2.08 2.6 3.5 3.65 3.64 3.65 3.64 4.16.687 South Decrete 1.7 313.5 7.1 3.7 7.1 3.56 6 7.85.730 Terresee 1.7 313.5 7.1 3.16 3.75 3.69 6.166673 Terresee 1.7 313.5 7.1 3.7 7.1 3.75 3.69 6.166673 Terresee 4.0 5.1 2.11 3.4 2.16 3.65 6.166673 Terresee 4.0 5.1 2.13 3.65 6.16673 3.66 6.166673 Werinin 6.5 5.2	Oregon	5.7	155.7	1.67	20	VET	2.0	-997	50	3,727,407
Proce bland 20.8 3.4 7.2 5.2 5.3 5.3 2.3 2.3 3.3 1.057.391 Noce bland 1 2	Pennayiyania	1.4	697	76.8	19:3 2	50	63	3.85	3.82	12,516,596
Sourch Greener 22 2502 573 356 36 136 335 361 4(46877 Roucks 1 1 1 3 2 1 3 3 3 3 3 3 4(46877 Terressee 1 1 3 2 1 3	Proce Island	30.8	VEV	72.8	23	15.3	5	2.06	m și	1,057,381
Sourch Devote 16 148.5 81.4 0.7 3.2 7.1 3.26 0 78.513 Terrensee 1.7 3135 72.2 21.1 3.4 13.6 3.35 3.69 6.136093 Terrensee 0.1 3135 7.2 21.1 12.9 41.2 11.3 3.69 6.136093 Terrensee 0.1 1.1 12.9 41.1 12.9 41.2 11.3 3.69 5.6.13616 Terrense 0.1 2.50 86.6 1.0 12.2 5.6 3.7 2.61.816 Vermort 4.0 5.2.1 3.93 1.1 2.0 6.6 3.71 7.69 6.0/1/1 Winglue 8.1 5.2.1 3.93 1.1 2.0 6.6 3.51 7.69 6.0/1/1 Ware Vinglue 8.1 5.3 3.1 2.0 5.6 3.6 6.0/1/1 Ware Vinglue 1.2 3.4 2.1 2.6 5.6 5	South Caroline	22	250.2	57.9	952	3.6	3HC	57	361	4,416,867
Terrensee 17 3135 72.2 21.1 3.4 21.6 3.35 3.69 6,13653 Terrensee 10.2 216.7 4/1 12.9 4/1.2 12.9 6,13653 Umont 4.3 2.305 86.6 10.0 12.9 12.3 2.813,643 Umont 4.3 2.305 86.6 10.0 12.2 5.85 2.313,643 Winglin 4.3 2.30 36.6 10.1 2.0 7.83 2.613,643 Winglin 6.5 1.6 2.1 2.3 3.67 7.717 2.813,643 Winglin 6.5 1.1 2.0 6.5 2.1 2.67 3.67 7.717 Winglin 6.5 1.1 2.0 6.6 3.1 2.67 5.67 7.717 Winglin 1.2 3.4 4.3 5.7 7.71 7.81 7.717 Weiwing 2.3 3.63 4.3 4.3 4.5 6.67,55	South Devote	3.6	1485	814	07	32	1.5	3 7 8	0	796,513
Totacs 20.2 156.7 4.1.1 12.9 4.1.2 11.3 3.0.8 3.37 2.3819.64.2 There 4.3 2.5.3 3.6.6 1.1 1.2 2.6 3.27 2.3819.64.2 Thermort 4.3 2.5.3 3.6.6 1.1 2.0 6.6 3.6.1 2.6.2 2.8.18.6 2.8.18.6 2.8.18.6 2.8.18.6 2.8.18.6 2.8.18.6 2.8.18.6 2.8.18.6 3.7.1 2.8.18.6 3.6.1 2.6.18.6 3.6.1 2.6.18.6 5.8.18.78.7 5.8.18.78.75	Ternessee	1.7	313.5	772	21.12	e ci	33.G	335	88	6,158,953
Ularn 4.3 250.5 80.6 1.0 21.2 5.8 2.62 0.73 2.65.1815 Yermont 4.0 52.1 93.3 1.1 2.0 6.6 3.51 7.69 6.0,11 Yean 6.5 1.6.2 2.6.1,815 2.6.1,815 7.69 6.0,11 7.09 6.0,11 7.01 6.0 7.12,120 7.01 7.02 6.0,11 7.02 6.0,11 7.02 6.0,11 7.02 6.0,11 7.01 2.0,11 7.01 6.0 6.01	Texas	707	156.7	1.14	12.9	41.2	11.3	88	337	23,819,042
Wermort 4.0 52.1 93.8 1.1 2.0 6.6 3.51 7.69 6.30,41 Weakington 6.5 16.2 26.3 23.3 6.5 16.1 7.69 6.30,41 Weakington 8.1 15.3 3.5 23.3 6.5 16.1 2.67 3.67 7.32,730 Weakington 8.1 13.3 3.7 12.2 6.3 3.64 4.55 6,65,755 Weakington 1.2 3.3 1.8 1.0 5.06 3.4 1.81,703 Weakington 2.3 3.61 3.1 6.1 6.3 5.05 3.4 1.81,703 Weakington 2.3 10.62 3.61 3.1 6.1 5.05 3.4 1.81,703 Weakington 2.3 1.0 5.0 5.05 3.4 1.81,703 Weakington 2.3 3.61 5.1 5.05 3.4 1.81,703 Weakington 2.3 3.61 5.1	Utan	64	2502	80.6	10	12.2	83	2.62	0.73	2,651,816
Wrginia 65 162.3 26.3 23.3 6.9 10.1 2.67 3.67 7.21.700 Wrginia 8.1 162.3 162.3 23.3 3.7 12.2 6.9 10.1 2.67 3.67 7.21.700 Wree Uiguta 1.1 3.7 3.7 1.3 3.7 1.2 6.9 1.61 6.9 6.67/755 Wree Uiguta 1.2 3.24 3.7 3.7 1.2 6.9 5.65 9.4 1.61.703 Wree Uiguta 2.3 3.0 1.8 1.8 2.40 5.69/20 9.4 1.61.703 Wree Wiguta 2.3 3.1 6.1 8.1 6.1 6.8 2.52 7.12 5.94.20	Vermont	4.0	1725	888 8	11	50	6.6	351	692	620,414
Machington B.1 158.0 7.1.3 3.7 12.2 6.3 3.6 4.55 6,65/55 Water Wig. Na 1.2 32.4 92.5 3.3 1.8 2.4.0 5.05 9.4 1,61./03 Water Wig. Na 2.3 1.6 2.4.0 5.05 9.4 1,61./03 Water Wig. Na 2.3 1.0 5.0 5.05 9.4 1,61./03 Water Wig. Na 2.3 1.6 1.6 2.6 5.05 9.4 1,61./03 Water Wig. Na 2.3 1.6 1.6 6.1 6.1 6.4 1,61./03 Water Wig. Na 2.4 1.0 5.05 9.4 1,61./03 5.05 9.4 1,61./03 Water Wig. Na 5.0 1.06.2 80.1 8.1 6.1 6.6 5.05 7.12 5.552 7.12 5.552	Wrginia	50	1623	523	2.5	68	100	2.67	367	7,721,730
Mass Vig. Na 1.2 33.4 97.5 3.3 1.8 2.4(b 5.05 9.4 1.6(1,/03) Wass Vig. Na 2.3 2.6 3.0 3.0 3.4 1.6(1,/03) Wass Vig. Na 2.3 2.6 3.0 3.6 3.6 3.6 3.6 Wass Vig. Na 2.6 3.0 3.6 3.6 3.6 3.6 3.6	Wheth rigbon	1 0	158.0	213	24	17.7	3	-9°	34	6,465,755
	Whenk Ving, nue		V2	526	in : M	18	940	8	e i	1,811,403
	W scondin	ถึง	108.2	1.08	51	61	88	52	2112	5,599,420

Table A2. State Characteristics, 1990 Census (5% microdata sample), 2005-2009 ACS, 2010 ACS

<u>State</u>	Model 1	Model 2	Model 3	Model 4	Model S	Mode 6	Model 7	Model 8	Model 9
Alabeme	0.644	0.406	0.391	0.398	0.355	0.357	0.345	0.298	C.199
Alaska	-0.208	-0.112	-0.071	-0.000	-0.028	-0.029	-0.071	-0.061	-0.079
Arizona	-0.197	-0.049	-0.045	-0.050	-0.025	-0.071	-0.058	-0.017	-0.157
Arkansas	0.298	0.079	-0.019	-0.018	-0.060	-0.117	-0.122	-0.128	-0.220
Callforn a	-0.805	-0.593	-0.615	-0.617	-0.415	-0.436	-0.426	-0.411	-(.292
Colorado	0.110	0.275	0.325	0.313	0.298	0.269	0.268	0.307	C.325
Connecticut	-0.353	-0.303	-0.275	-0.286	-0.259	-0.230	-0.226	-0.218	-0.136
Delaware	0.419	0.156	0.116	0.134	0.122	0.120	0.117	0.100	C.061
District of Columbia	-0.156	-0.135	-0.171	-0.183	-0.170	-0.153	-0.152	-0.168	-0.097
Florida	0.539	0.438	0.471	0.504	0.595	0.545	0.578	0.542	C.324
Georgia	0.551	0.254	0.179	0.204	0.171	0.035	0.043	-0.025	C.051
Hawall	-0.441	-0.167	-0.125	-0.125	-0.092	-0.038	-0.080	-0.071	-0.117
idano	0.152	0.174	0.243	0.275	0.246	0.247	0.238	0.275	C.262
11 nois	-0.413	-0.284	-0.242	-0.273	-6.241	-0.131	-0.180	-0.207	-0.078
Inciana	-0.125	-0.145	-0.099	-0.087	-0.125	-0.034	-0.100	-0.087	-0.114
lowa	-0.175	-0.107	-0.100	-0.106	-0.131	-0.133	-0.114	-0.088	-0.036
Kansas	-0.083	0.077	0.116	0.109	0.079	0.109	0.096	0.116	C.205
Kennucky	0.612	0.244	0311	0.305	0 267	0.249	0 741	0.247	C 184
Louisiana	0.027	0.021	0.096	0.102	0.078	0.132	0.119	0.069	-0.020
Maine	-0.217	-0.107	-0.082	-0.105	-0.103	-0.033	-0.085	-0.078	-0.067
Maryland	-0.177	-0.290	-0.20L	-0.200	-0.189	-0.174	-0.173	-0.208	-0.199
Massachusetts	0.006	0.046	0.079	0.077	0.094	0.105	0.107	0.109	C.102
Michigan	-0.416	-0.178	-0.157	-0.156	-0.176	-0.054	-0.085	-0.105	-0.131
Minnesota	-0.088	-0.113	-0.118	-0.139	-0.159	-0.141	-0.149	-0.123	C.022
Mississ op	0.610	0.254	0.112	0.124	0.098	0.126	0.115	0.067	-0.012
Missouri	0.260	0.358	0.412	0.398	0.354	0.396	0.378	0.369	C.238
Montana	0.026	0.084	0.081	0.071	0.059	0.086	0.080	0.083	-0.001
Nabraska	-0.566	-0.402	-0.415	-0.401	-0.416	-0.410	-0.415	-0.384	-0.177
Nevaca	0.105	0.32.2	0.315	0.301	0.356	0.116	0.133	0.184	-0.086
New Hamosh re	-0.213	-0.071	-0.063	-0.062	-0.060	-0.050	-0.051	-0.047	-0.029
New Jersey	0.606	0.293	0.303	0.344	0.413	0.379	0.420	0.401	C.431
New Mexico	-0.332	-0.060	-0.025	0.001	-0.001	0.030	0.025	0.064	-0.084
New York	0.404	0.166	0.109	0.070	0.195	0.178	0.216	0.189	C.200
North Carol na	0 528	0.139	0.052	0.044	0.000	-0.193	-0.154	-0.181	-0137
North Dakota	0.257	0.180	0.193	0.193	0.180	0.180	0.177	0.171	C.115
Ohio	-0.517	-0.292	-0.265	-0.286	-0.307	-0.216	-0.234	-0.234	-0.185
Oklahoma	-0.023	0.025	-0.023	-0.041	-0.076	-0.011	-0.056	-0.039	-0.032
Oragon	0.057	0.177	0.148	0.157	0.146	0.166	0.160	0.199	0.106
Pennayivania	0.142	0.066	0.042	0.078	0.061	0.111	0.095	0.095	C.056
Rhode Mand	-0.004	0.022	0.030	0.034	0.035	0.036	0.036	0.035	C.025
South Carolina	0.578	0.162	0.124	0.155	0.120	0.101	0.093	0.042	C.050
South Decote	-0.170	-0.067	-0.140	-0.141	-0.145	-0.124	-0.128	-0.114	-0.070
Tennessee	0.327	0.053	-0.015	-0.019	-0.059	-0.118	-0.122	-0.132	-0.015
Texas	-0.469	-0.291	-0.292	-0.309	-0.266	-0.235	-0.279	-0.277	-0.179
Utan	-0.279	-0.141	-6.131	-0.126	-6.144	-6.178	-6.178	-0.133	C.051
Varmort	-0.073	-0.024	-0.013	-0.013	-0.013	-0.011	-0.011	-0.010	-0.007
Virginia	0.448	0.256	0.255	0.264	0.258	0.258	0.256	0.225	C.281
Wash naton	-0.336	-0.271	-0.282	-0.279	-0.262	-0.253	-0.258	-0.220	-0.198
West Virginia	0.149	0.113	0.131	0.124	0.111	0.127	0.122	0.120	C.060
W sconsin	-0.498	-0.343	-0.365	-0 389	-0.410	-0.332	-0.348	-6 379	-6 211
Wyoming	-0.137	-0.046	-0.037	-0.035	-0.049	-0.038	-0.017	-0.004	-0.038

Table A3. State Random Effects Estimates for Log Odds of Non-Enrollment,Mexican Origin 15-17 Year-olds, 2005-2009 ACS.