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The Earth’s climate is changing. Global temperatures have risen at around 0.2°C 

per decade over the past 30 years, bringing the global mean temperature to the warmest 
level on record—all the ten warmest years on record have occurred since 1990. Over the 
last 50 years, sea levels have increased and both the frequency and the intensity of 
extreme weather events have changed. A consensus is growing that climate change is a 
result of greenhouse gases caused by human activity.  

There is a belief that these changes will have effects on morbidity and mortality 
through (1) increases in malnutrition and consequent disorders—affecting mostly low-
income populations; (2) changes in the incidence and geographical range of infectious 
diseases; and (3) increases in the number of deaths, disease episodes, and injuries from 
heat waves, floods, storms, fires, and droughts. It has also been suggested that climate 
change may affect human migration, with millions of people displaced by shoreline 
erosion, coastal flooding, and agricultural disruption. Poor communities are seen as the 
most vulnerable—90 percent of deaths related to natural disasters occur in developing 
countries—because such communities are often situated in risk-prone areas and rely on 
public infrastructures, such as water, energy and transportation, that are affected by 
disaster-related episodes.  

Tropical deforestation is the second largest source of greenhouse gas emissions, 
accounting for 20 percent of the world’s carbon dioxide (CO2) emissions (Gullison et al., 
2009). Tropical forests store 25 percent of the carbon in the terrestrial biosphere and the 
decay and burning of wood releases carbon into the atmosphere (Bonan, 2008). Tropical 
deforestation is responsible for more emissions than all cars, trucks, ships, and airplanes 
combined. Deforestation also reduces biodiversity, disturbs water regulation, and 
destroys livelihoods for many of the world’s poorest.  

Reducing emissions from deforestation and degradation (REDD) is considered as 
one of the fastest and cheapest ways of reducing carbon emissions (Stern, 2006). The 
potential of REDD activities to mitigate climate change has led to great interest in these 
initiatives. The 2009 United Nations Climate Change Conference (UNCC) accord—in 
which developed countries committed to give $30 billion over the next three years to help 
developing countries adapt to climate change and cope with its impacts—references 
“[s]caled up, new and additional (…) funding” to “enhance action on mitigation,” 
including REDD.  

The (potential) contribution of reducing tropical deforestation for climate change 
mitigation—and consequently the success of international accords in REDD through 
financial-incentive mechanisms—depends crucially on how large are the reductions in 
deforestation associated to avoided deforestation (AD) initiatives. Despite the promises 
these initiatives hold for reducing CO2 emissions, little is known about how effective 
they are. 



This paper uses quasi-experimental econometric methods to study the effects on 
deforestation of a large AD initiative in the Brazilian Amazon. It will answer important 
questions such as whether AD initiatives work, how large is the effect on deforestation 
(and consequently on carbon emissions), and whether there are spillover effects to non-
participant areas.  

We study the case of the Forest Allowance Program, an initiative implemented in 
the state of Amazonas that pays the local population a monthly allowance for 
environmental services and increases deforestation monitoring and enforcement. The 
initiative extends so far to an area of more than 10 million hectares that is larger than 
Portugal. It is estimated that deforestation in protected areas of the state of Amazonas 
could emit as much as 3.5 billion tons of CO2 into the atmosphere—which correspond to 
the annual emissions of China—at an estimated cost of 73.5 billion dollars to society.  

The Forest Allowance Program was initially implemented in the Juma Sustainable 
Development Reserve in September of 2007.1 Since then, the state government of 
Amazonas has implemented it in another 14 State Conservation Units (CUs). It has three 
main initiatives: (1) providing families that commit to sustainable development a monthly 
allowance of R$50 (approximately $28) as a reward for their environmental services2; (2) 
strengthening environmental monitoring and control by using satellite imagery and 
regular inspections on the ground; and (3) making investments to promote the 
engagement of the local population in sustainable production of forest products, such as 
oils, nuts, wood, fruits, and native honey.3  The largest CU participating in the program 
has an area of 1.124 million hectares, while the smallest has an area of roughly 103 
thousand hectares. There are 7,389 families living in these CUs (there are on average 493 
families living in each CU), 6,943 of which (corresponding to 94%) receive PES.  

We use two empirical strategies to estimate the effects of the program on 
deforestation. We initially investigate in a differences-in-difference framework whether 
the growth in deforestation rates in conservation units (CUs) participating in the program 
slowed down (relative to the growth in non-participant CUs) after the introduction of the 
program. We then proceed to compare the growth in deforestation rates of contiguous 
areas on opposite sides of participant CUs’ boundaries. For this purpose, a panel dataset 
with geographically detailed deforestation estimates was constructed particularly for this 
project with the conversion of satellite imagery into area-specific annual deforestation 
estimates.  

The first empirical strategy estimates the effect of the program on deforestation 
using a differences-in-difference approach. The strategy relies on the assumption that 
deforestation growth in control CUs provide a good counterfactual to the growth in 
treatment CUs in the absence of the program. Hence, we will estimate: 
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1The Juma Sustainable Development Reserve is the only CU among the 15 participating in the program 
whose funding comes from carbon trade, characterizing it as a REDD initiative. 
2Regular in loco inspections and satellite imagery are used to monitor deforestation. A family that does not 
comply with the program requirements loses the right to receive the monthly allowance. 
3The program also makes investments in education, health, transportation, and telecommunications in CU 
communities and provides financial support to organize and strengthen community associations that 
overlook the program. 



 
where rtY  is the deforestation rate of CU r at year t, rtD  is a dummy variable that is equal 

to 1 if CU r had been treated by year t, rD  is a treatment status dummy, is a year fixed 

effect,  is a CU-specific (time-invariant) fixed effect, and ( )tf  is a cubic function that 
allows for differential time trends between control and treatment areas: 
 

( ) .3
4

2
32 ttttf ααα ++=     (2) 

 
The year fixed-effects tµ  capture the (pre-program) time trend common to control and 

treatment CUs while the cubic function ( )tf  captures the deviation specific to control 
CUs from this common trend. The estimation of (1) will deliver an unbiased estimate of 
the causal effect on deforestation if the error term rtε  is orthogonal to rtD . 

This strategy relies on the assumption that (once we control for differential pre-
program time trends) the time trend of deforestation in control CUs after the program 
provides a good counterfactual to what the time trend of deforestation in treatment CUs 
would have been had the program not been implemented. This assumption would be, 
however, violated—and one would underestimate the reduction in deforestation 
associated to the program—if the government chose to implement the program in areas 
that were at greater risk of deforestation and would have had faster deforestation growth 
in the absence of the program.  

We will therefore use a second empirical strategy that refines on the difference-in-
differences approach by comparing the growth in deforestation rates in contiguous areas 
on opposite sides of treatment CUs’ boundaries. The underlying idea of this strategy is 
that—because of the proximity—areas just outside the treatment CUs’ boundaries 
provide a good counterfactual to areas inside the CU close to the boundary. We estimate 
the following equation: 

 
( ) ,*3210 prtprtprtprt DDDDY χγγγγ ++++=     (3) 

 
where p indexes a plot that may lie on either side of a CU’s boundary,  is the 

deforestation rate of plot p in reserve r at year t,  is a dummy variable that is equal to 

1 if CU r had been treated by year t,  is a dummy variable that is equal to 1 if plot p is 

within the reserve boundaries, and prtχ  is an error term. The strategy compares the 
growth in deforestation rates after the introduction of the program of areas just outside 
the CUs’ boundaries to areas just inside. We allow for reserve-fixed effects and 
differential time trends between areas inside and outside the boundaries. In particular, we 
assume that the error term can be decomposed in the following way:  
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where  is a year fixed effect,  is a reserve-specific fixed effect, and  is an error 

term. The year fixed-effects tµ  capture the (pre-program) time trend common to inside 

and outside areas while the cubic function ( )tg  captures the deviation specific to outside 
areas from this common trend. 

Previous work has looked at the effects of AD initiatives on deforestation. Studies 
that investigated payments for environmental services (PES) programs—in which 
individuals or communities are compensated for undertaking actions that contribute to 
environmental conservation—in Costa Rica and Mexico have found small or no effects 
on deforestation (Sanchez-Azofeifa et al., 2007; Pfaff et al., 2008; Robalino et al., 2008; 
Alix Garcia et al., 2010). A related literature found larger effects of establishing protected 
areas on deforestation and forest fires (Andam et al., 2008; Nelson and Chomitz, 2009; 
Joppa and Pfaff, 2010). The major challenge for these evaluations is to identify the 
counterfactual deforestation rate—the deforestation rate that would have prevailed in the 
absence of the program. The avoided deforestation associated with an initiative is the 
difference between the counterfactual and the actual deforestation rate.  

These studies have estimated the effect of such programs on deforestation rates by 
comparing the deforestation rates of areas included in the program—i.e., the treatment 
areas—to those of areas not included—i.e., the control areas. But the treatment areas are 
different from control areas (e.g., the government may choose to implement the program 
in areas at greater risk of deforestation or landholders may choose to participate only if 
the opportunity cost of the land is low), which suggests that they would have had 
different deforestation rates even if the program had not been implemented. To address 
these baseline differences, these studies use matching estimators that compare 
deforestation rates in treatment areas to control areas with similar observable 
characteristics. The issue with this approach is that treatment and control areas may differ 
along dimensions researchers do not observe, in which case the estimates of the program 
effect on deforestation will be biased. The quasi-experimental econometric methods we 
will use yield estimates that—under some assumptions—are unbiased even if there are 
unobservable differences between treatment and control areas.  

Moreover, to the best of our knowledge, our study is the first to use panel data to 
estimate the effects of AD programs. The studies cited above rely on cross-sectional 
variation, which requires strong identification assumptions. In contrast, this study will use 
cross-sectional, time and spatial variation, adding credibility to our estimates.  

The results from this paper have broader implications for the design of policies to 
reduce emissions from deforestation and degradation (REDD). Despite the promises 
these initiatives hold for reducing CO2 emissions, little is known about how effective 
they are. This study will provide reliable estimates on the effectiveness of AD policies, 
based on rich satellite imagery data and quasi-experimental econometric methods. 
Perhaps most importantly, we will provide credible estimates of the cost per ton of 
greenhouse gases abated from a deforestation program.  This will allow for a comparison 
of the cost effectiveness of AD programs, relative to other policies (e.g., energy 
efficiency requirements for buildings, appliances, and cars) at reducing greenhouse gases. 
 


