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Abstract

A number of indices have been used in recent years to calculate
lifespan variation, each with different underlying properties. Although
these indices are assumed to be interchangeable, little research has
been conducted to show under which conditions this assumption is
appropriate, or how to compare their responses to the underlying mor-
tality schedule. We compare seven indices of lifespan variation: life
disparity, the Gini coefficient, the standard deviation, the variance,
Theil’s index, the mean logarithmic deviation, and the inter-quartile
range. We derive the sensitivity and elasticity of each index by apply-
ing Markov chain theory and matrix calculus. Using empirical French
and Russian male data we compare the underlying sensitivities to mor-
tality change under different mortality regimes in order to test under
which conditions the indices might differ in their conclusions about the
magnitude of lifespan variation. Finally we demonstrate how integrat-
ing these sensitivities can be used as a method of age decomposition.
The result is an easily computable method for calculating the proper-
ties of this important class of longevity indices.
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1 Introduction

The longevity experience of a cohort has long been summarized by its expec-
tation, but recently attention has expanded to focus on variation in longevity
as a natural complement to describing the average length of life. Indices of
variability have been compared across populations to measure the rectan-
gularity of the survival curve or degree of mortality compression for both
human and and non-human populations (Demetrius 1978; Eakin and Witten
1995; Edwards and Tuljapurkar 2005; Edwards 2011; Engelman, Canudas-
Romo and Agree 2010; Go et al. 1995; Hill 1993; Kibele 2010; Le Grand
1987; Myers and Manton 1984; Nusselder and Mackenbach 1996; Paccaud
et al. 1998; Robine 2001; Shkolnikov, Andreev and Begun 2003; Shkolnikov
et al. 2010; Smits and Monden 2009; van Raalte et al. 2011; Vaupel, Zhang
and van Raalte 2011; Wilmoth and Horiuchi 1999; Zureick 2010). They have
also been employed above the modal age at death to examine whether old-age
mortality is being compressed, or whether these deaths are shifting to higher
ages (Brown et al. in press; Cheung et al. 2005; Cheung and Robine 2007;
Kannisto 2000; 2001; Ouellette and Bourbeau 2011; Thatcher et al. 2010).

There are many indices of lifespan variation, which have been compared
by Anand et al. (2001); Cheung et al. (2005); Kannisto (2000); Shkolnikov
et al. (2003); Vaupel et al. (2011) and Wilmoth and Horiuchi (1999). These
authors have found such high correlations among indices as to make them ap-
parently interchangeable. Less attention has been paid to differences among
the indices in their responses to perturbations in mortality schedules, or to
understanding when indices can be expected to disagree. Rarely are reasons
for choosing one index over another tied in to any normative concept of in-
equality or to social preference for the weights placed on deaths at different
ages (Asada 2007; Anand et al. 2001; Gakidou, Murray and Frenk 2000). A
notable exception to this is the WHO attempt to quantify inequality over
individuals as part of World Health Report 2000, using an index similar to
a Gini coefficient, modified by expert opinion (Gakidou et al. 2000; Gakidou
and King 2002; WHO 2000).

Our aim in this paper is to derive and compare the sensitivities and elasticities
to mortality changes of seven of the most commonly used indices of lifespan
variability. We do this by reformulating the problem of lifespan variability in
terms of an absorbing Markov chain, and using methods derived from matrix
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calculus (Caswell 2007; 2008; 2009; 2010). These sensitivity results may
permit researchers to better tie their choice of index to their research aims.
They also make possible the decomposition of differences among populations
or over time into contributions from changes in age-specific mortality, using
Life Table Response Experiment (LTRE) methods (Caswell 2001). We apply
these methods to data from France and Russia, and illustrate instances where
these different sensitivities cause indices to disagree on the magnitude or even
direction of changes in lifespan variation.

2 Indices of lifespan variation

We make comparisons of the following indices of variability:

1. Life disparity e†

Life disparity is a life table based index, defined as the average remain-
ing life expectancy at death, or alternatively the average years of life
lost in a population due to death. The elasticity of life expectancy with
respect to mortality change, also known as Keyfitz’ H (Keyfitz 1977),
is e† divided by the life expectancy at birth (Goldman and Lord 1986;
Vaupel 1986; Vaupel and Canudas Romo 2003).

2. Gini coefficient G

The Gini coefficient is often used in economic inequality research. It
ranges from 0 to 1, with higher numbers signaling greater inequality. It
is the mean of the absolute value of the inter-individual differences in
age at death, divided by the life expectancy (Shkolnikov et al. 2003).

3. Theil’s index T

4. Mean logarithmic deviation MLD

Both T and MLD are based on the entropy of the distribution of age at
death, developed from information theory by Henry Theil in the 1960s
(Theil 1967). The entropy of a distribution measures the amount of
information needed to specify the result of sampling; if everyone died at
the same age, no information is needed and the entropy-based measures
are zero.
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5. Standard deviation of the distribution of age at death, S

6. Variance in the distribution of age at death, V

7. Inter-quartile range of the distribution of age at death, IQR

The indices S, V and IQR are standard statistical measures of vari-
ability applied to the distribution of age at death.

Different research objectives often call for the use of one index over another
due to their underlying formal properties. The variance V , Theil index T
and the mean logarithmic deviation MLD are all additively decomposable
into between- and within-group variation (Shorrocks 1980; van Raalte 2011).
This decomposition can used to study the contribution of between-group dif-
ferences to the total level of lifespan variation. The Gini coefficient G can
also be decomposed in this way, but contains an overlap term (Lambert and
Aronson 1993). The MLD index can additionally be additively decomposed
over time, to account for compositional change to the between- and within-
group variation components (Mookherjee and Shorrocks 1982; van Raalte
2011). The life disparity e† index has interesting connections to the pertur-
bation theory of life expectancy. The product of e† and the average rate of
progress in reducing age specific death rates is equal to the rate of change in
life expectancy (Vaupel and Canudas Romo 2003).

Indices also differ in whether they measure absolute inequality (the level
of variation would be unaffected by additive gains to everyone’s lifespan) or
relative inequality (the level of variation would be unaffected by proportional
gains to everyone’s lifespan). Additive indices are more easily interpretable,
as they are normally expressed in years.

Finally the sensitivity of indices to changes in mortality at different ages is
perhaps the most important and least understood property of the indices.
In some circumstances, society might consider variability in ages at death
caused by high levels of premature mortality to be more detrimental than
variability caused by differences in old age mortality. In such a case, usage
of an index with a high sensitivity to early death would be appropriate. As
economist Paul Allison (1978) noted: “The choice of an inequality measure
is properly regarded as a choice among alternative definitions of inequality
rather than a choice among alternative ways of measuring a single theoretical
construct.”
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The seven indices we examine here are highly correlated across countries and
times. Some of these correlations have been reported by Vaupel et al. (2011)
and Wilmoth and Horiuchi (1999). We present the correlations among all
seven indices, from birth and from age 10 (Table 1), calculated over all female
and male life tables currently in the HMD (2011). Thus we expect that all
of them will pick up most of the general patterns in lifespan variation in
inter-population comparisons. Our focus is on the details of the response of
the indices to changes in mortality.

e† G T MLD S V IQR

e† 1.000
G 0.977 1.000
T 0.945 0.991 1.000
MLD 0.964 0.991 0.992 1.000
S 0.981 0.931 0.890 0.928 1.000
V 0.987 0.943 0.907 0.941 0.996 1.000
IQR 0.968 0.965 0.946 0.955 0.921 0.944 1.000

e†10 G10 T10 MLD10 S10 V10 IQR10

e†10 1.000
G10 0.984 1.000
T10 0.979 0.995 1.000
MLD10 0.967 0.986 0.995 1.000
S10 0.986 0.958 0.961 0.952 1.000
V10 0.985 0.960 0.967 0.960 0.998 1.000
IQR10 0.981 0.978 0.978 0.969 0.958 0.965 1.000

Table 1: Pearson correlation coefficients between pairs of indices, calculated
from birth (ages 0-110+) in the top panel and calculated conditional upon
survival to age 10 (ages 10-110+) in the bottom panel, for all female and
male life tables in the Human Mortality Database (6860 in total).
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3 Markov chain formulations of longevity

To analyze these indices, we use a flexible and powerful formulation of the
mortality schedule as a finite-state absorbing Markov chain (Caswell 2001;
2006; 2009; 2010; Feichtinger 1973). This formulation lets us express the
various indices in matrix notation, and then apply matrix calculus to obtain
the sensitivity and elasticity of each index to changes in parameters (e.g.
Caswell 2006; 2009; 2011). Since this study focuses on human demography,
we focus on the age-classified model. Nevertheless, these models could be
generalized to apply to stage-classified populations.

Notation. We use matrix notation in deriving the sensitivities. Matrices
are denoted by upper case bold faced symbols (e.g., X) and vectors by lower
case bold faced symbols (x); vectors are column vectors by default. The
superscript T denotes the transpose. The symbol diag (x) denotes the matrix
with the vector x on the diagonal and zeros elsewhere. The vector e is a
vector of ones, and the vector ei is the ith unit vector; i.e., the vector with
a 1 in the ith location and zeros elsewhere. The Hadamard, or element-by-
element product is denoted by ◦ and the Kronecker product by ⊗. The vec
operator (e.g., vec X) stacks the columns of a matrix into a column vector.

We consider s age classes. Let U be a matrix (s×s) with survival probabilities
on the subdiagonal and zeros elsewhere; i.e.,

ui+1,i = 1− qi−1 i = 1, . . . , s− 1 (1)

where qi is the probability of death between ages i and i + 1 from the life
table.

The matrix U describes transitions among the transient states in the Markov
chain. Death is an absorbing state; we classify deaths by the age class at
death with a diagonal matrix M (s× s), where

mi,i = 1− qi−1 i = 1, . . . , s (2)
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The transition matrix1 for the Markov chain is

P =

(
U 0
M I

)
(3)

In this Markov chain, absorption corresponds to death, and the time to ab-
sorption corresponds to longevity. The statistical properties of longevity can
be directly calculated from P. The mean time spent in age class i, condi-
tional on starting in age class j is given by the (i, j) entry of the fundamental
matrix

N = (I−U)−1 . (4)

Because absorption corresponds to death, the time to absorption can be
treated as a measure of longevity (Caswell 2001, 2006, 2009). The mean
time to absorption is given by the column sums of N. Let η̃ denote the
vector whose ith entry is the expected time to absorption for an individual
in age class i; it is given by

η̃T = eTN (5)

where e is a vector of ones. However, it can be shown that this exceeds by
0.5 years the life expectancy calculated by the usual life table formulations;
accordingly, we use

η = η̃ − 0.5e (6)

to represent life expectancy. The subtraction of the constant 0.5 does not
affect the calculations of sensitivities.

The vector of variances in longevity satisfies

vT = eTN (2N− I)− ηT ◦ ηT (7)

where ◦ denotes the Hadamard, or element-by-element product.

The complete distribution of age at death, conditional on starting in age
class j, is given by column j of the matrix

B = MN. (8)

1Note that P is column-stochastic and operates on column vectors, to agree with the
orientation of population projection matrices (e.g., Caswell 2001, Keyfitz and Caswell
2005).
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The distribution of age at death for an individual in the first age class is
given by the first column of B;

f = Be1 (9)

The survivorship function `, beginning at age 1 and with a radix `(0) = 1, is
given by

` = e−Cf (10)

where

C =


0 0 · · · 0
1 0 · · · 0
...

...
...

1 1 1 0

 (11)

takes cumulative sums of the vector f .

The vector x contains the average age at death in the age interval (i.e. for
French males in 2005 it is {0.06, 1.5, 2.5, ..., 109.5, 111.32}).

In Table 2 we present the conventional lifetable notation alongside the less
familiar matrix notation for each index. In conventional notation `y is sur-
vivorship, dy the death density, and ey remaining life expectancy for the age
interval y to y+1. We further denote ay as the length of the age interval lived
by those who died. An overbar, for example ēy, is used when adjustments to
the variable are necessary to account for the portion of the age interval lived
by those who died, i.e.

ēy = ey + ay (ey+1 + ey) (12)

By this same logic, x̄y is the average age at death over the interval. Generally
it is the age halfway in between the two age intervals, but in the first year of
life x̄0 = a0. The highest age interval is denoted by ω.

Finally in the IQR formula, x̂1 and x̂3 are the interpolated first and third
age quartiles, at which 25 and 75 percent of the total deaths have occurred.
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conventional LT notation matrix notation

e†
ω∑
y=0

dy ēy fTη

G 1− 1

e0

ω∑
y=0

`2y+1 1− 1

η1
eT [(e−Cf) ◦ (e−Cf)]

T

ω∑
y=0

dy

(
x̄y
e0
ln
x̄y
e0

)
fT
[(

x
η1

)
◦
(

log x
η1

)]

MLD
ω∑
y=0

dy

(
ln
e0
x̄y

)
fT [log (η1) e− logx]

V

ω∑
y=0

dy (x̄y − e0)
2

[eTN (2N− I)− ηT ◦ ηT]
T

S
√
V

√
V

IQR x̂3 − x̂1 x̂3 − x̂1

Table 2: Formulas for calculating indices in conventional life table formula-
tion (discrete, assuming l0 of 1) and their equivalent formulation in matrix
notation.
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4 Sensitivity and elasticity analysis

Perturbation analysis was first introduced to demography in the 1960s and
1970s in assessing the sensitivity of population growth rates and life ex-
pectancy to changes in the underlying mortality rates (Caswell 1978; Demetrius
1969; Hamilton 1966; Keyfitz 1971). In recent years this work has been ex-
tended and further life table relationships have been derived (Goldman and
Lord 1986; Pollard 1982; 1988; Vaupel 1986; Vaupel and Canudas Romo
2003). Widespread usage of perturbation analysis in demography, however,
was somewhat limited by the complexity in deriving the analytic expressions
for the derivatives of different indices and in its ability to handle complexities
in life history. Expressing the problem in terms of an absorbing Markov chain
and applying matrix calculus has greatly expanded the possibilities (Caswell
2001; 2008; 2009; 2010; Willekens 1977).

To assess respectively the absolute and proportional effects on the indices
from changes in the underlying mortality rates we needed the analytic ex-
pressions for the sensitivity and elasticity of the seven indices of lifespan
variability with respect to mortality. The sensitivity of e† was first derived
by Zhang and Vaupel (2009) in an age-classified model. This was later gen-
eralized to an age and stage classified model by Caswell (2010), who also
derived expressions for the sensitivity and elasticity of the variance and the
standard deviation (Caswell 2009). The other expressions were newly derived
for this paper.

As described in detail in Section 8.1, the sensitivity of a n× 1 vector y to a
m× 1 vector of parameters θ is given by the n×m vector

dy

dθT
=

(
dyi
dθj

)
, (13)

whose (i, j) entry is the derivative of yi with respect to θj. The elasticity of
y to θ is

εy

εθT
= diag (y)−1

dy

dθT
diag (θ) . (14)

The formulas resulting from the matrix calculus may appear complicated, but
the complication arises from, and accounts for, the network of interactions
among the variables, and they are easily calculated. We performed all calcu-
lations in MATLAB 7.3.0 and have attached the code as an appendix. The
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sensitivities and elasticities of each index to age-specific mortality were de-
rived using matrix calculus techniques (Magnus and Neudecker 1988). These
techniques are also given extensive treatment in recent papers by Caswell,
using most of the same notation that we have here (Caswell 2009; 2010). The
derivation of the sensitivities of G, MLD, T , and IQR to mortality can be
found in the appendix.

We now turn to the demographic applications, especially in comparing the
sensitivities of these indices, examining how they have changed over time as
we have moved from high to low mortality regimes, and using the sensitivities
as a decomposition method.

5 A comparison of sensitivities: France and

Russia

We used French male data to broadly illustrate the underlying sensitivities
and elasticities of each index. We calculated the indices under four very dif-
ferent mortality regimes: high mortality (1888), medium mortality (1948),
low mortality (2005) and war/epidemic year (1918). The latter distribution
is interesting as the second mode is around young adulthood, and the dis-
tribution has a long right tail instead of the long left tail. To help visualize
these differences, all four distributions are plotted in Figure 1.

All indices are highly sensitive to changes in infant mortality. For this reason
we compared the sensitivities and elasticities at birth (Figures 2 and 3) and
age 10 (see appendix). Given the different units for each index, the elas-
ticities are perhaps intuitively easier to interpret. The y axis measures the
proportional change in the index from a one percent change in mortality at
each age on the x axis.

As we would expect from the high correlations between indices, the sensi-
tivities follow similar general age patterns. The primary differences are in
the sensitivity to infant mortality, the slope of the decline from birth to
late adulthood, and in the age at which the sensitivities cross the x-axis
(this age is the same for S and V ). Improvements in mortality below this
age reduce lifespan variation, while improvements after this age increase the
variation. The age itself has been termed the threshold age or a† due to
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its original derivation for the e† index (Zhang and Vaupel 2009). This age
has pushed itself out to later and later ages with time, and the differences
between threshold ages of the indices have considerably diminished.

In general, conditioning upon survival to age 10 resulted in only minor
changes to the pattern of the sensitivity of each index to mortality at dif-
ferent ages, although it did remove some of the differences between indices
found when examined from birth. This was particular the case for the MLD
and T indices which are highly sensitive to changes at birth, so much so that
changes at other ages are largely masked. The IQR index produces the most
unique sensitivity patterns. It is only sensitive to transfers between quartiles
and not to transfers within quartiles. Transfers of course are an awkward
concept in mortality research, particularly as there are no finite life years
that need to be distributed within the population. But in practice the idea
of age rationing in health care, sacrificing facilities and medicine for older
individuals to save younger individuals, comes close.

To see how the different threshold ages and sensitivity profiles of the various
indices could affect our assessment of whether a population is becoming more
egalitarian in its ages at death, we imagined a scenario of targeted interven-
tions leading to mortality reduction. Using French male data from 1888 and
2008, we calculated the threshold age and the percentage change in the index
from a 10 percent decrease in death rates over selected age ranges. This was
done for the indices calculated at birth and conditional upon survival to age
10 (Table 3). The largest differences between the indices occurred for mortal-
ity change at the youngest age ranges, particularly for the 1888 age-at-death
distribution where early death was more common. In the modern distribu-
tion, differences between indices were also large over the middle adult age
range 60-80. Indices with younger threshold ages such as MLD,S, and V
found that mortality reduction over these ages increased lifespan variation,
while the other indices all measured a decrease in variability. The different
responses to mortality change over adult ages between using an index calcu-
lated at birth or at age 10 was large for the historic population, but made
relatively little difference for the modern population.
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Threshold Age Percent increase in index from mortality reduction at ages
0-5 20-40 60-80 85+

Index 1888 2008 1888 2008 1888 2008 1888 2008 1888 2008
e† 43.4 76.2 -2.7 -0.3 -0.3 -0.6 1.0 -1.0 0.2 2.1
G 56.9 74.9 -4.6 -0.4 -0.8 -0.9 0.4 -0.9 0.0 1.2
IQR 2.8 69.7 -3.8 -0.1 0.4 -0.5 1.1 -2.7 0.0 1.6
MLD 24.8 68.7 -6.2 -5.1 0.1 -1.2 0.3 0.2 0.0 0.9
S 16.6 67.1 -1.4 -0.6 0.3 -0.8 0.9 0.3 0.0 0.9
T 46.3 69.7 -8.0 -1.9 -0.6 -1.9 0.4 -0.2 0.0 1.2
V 16.6 67.1 -2.8 -1.1 0.6 -1.6 1.9 0.6 0.1 1.9
Range 54.1 9.1 6.6 5.0 1.4 1.4 1.6 3.4 0.2 1.2

Threshold Age Percent increase in index from mortality reduction at ages
10-15 20-40 60-80 85+

Index 1888 2008 1888 2008 1888 2008 1888 2008 1888 2008

e†10 57.2 76.7 -0.4 0.0 -1.8 -0.7 1.5 -1.0 0.3 2.2
G10 58.8 75.1 -0.6 -0.1 -2.7 -1.0 0.9 -1.1 0.1 1.3
IQR10 43.1 69.8 -0.5 0.0 -4.2 -0.4 2.8 -2.8 0.0 1.7
MLD10 45.5 68.6 -1.6 -0.3 -3.3 -2.7 1.7 0.2 0.1 2.0
S10 42.5 67.2 -0.4 -0.1 -1.2 -1.0 1.5 0.3 0.1 1.0
T10 50.5 70.5 -1.3 -0.2 -3.8 -2.4 1.7 -0.2 0.1 1.5
V10 42.5 67.2 -0.9 -0.2 -2.5 -1.9 3.1 0.5 0.2 2.1
Range 16.3 9.5 1.3 0.3 3.0 2.3 2.2 3.4 0.3 1.1

Table 3: The threshold age (columns 2 and 3) and the percentage increase in
each index resulting from a 10 percent reduction in mortality over the given
age ranges, for indices calculated from birth (top panel) and conditional upon
survival to age 10 (bottom panel). French male period lifetable data from
Human Mortality Database.
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6 Decomposition of temporal trends in vari-

ability

Our perturbation results make it possible to decompose differences or changes
in any of the indices into contributions from differences or changes in any
of the parameters. The approach is known in population biology as Life
Table Response Experiment (LTRE) analysis, and has been widely used (see
review in Caswell 2001, Chapter 10). It applies to any demographic statistic
for which the sensitivity to the underlying vital rates can be calculated (e.g.,
Caswell 2011). Here, we use LTRE analysis to decompose temporal changes
in the indices of lifespan variability into contributions from changes in age-
specific mortality rates, for Russian males from 1958 to 2006.

Let y be an index, θ a vector of parameters (mortality rates in our applica-
tion) and let t denote time. The decomposition proceeds from noting that,
to first order,

y(t+ ∆t) ≈ y(t) +
dy

dθT

dθ

dt
∆t (15)

The product of the two derivatives in (15) sums the contributions of the
changes in all the parameters to the change in y. Thus the contributions to
that change are given by the entries of the vector

c(t) =

(
dy

dθT

)T

◦
(
dθ

dt

)
(16)

These contributions can be integrated to obtain the contributions to the
change in y from t0 to t1,

y(t1) ≈ y(t0) +

t1∑
i=t0

c(i) (17)

We computed the rate of change in the parameters, dθ/dt, using the Matlab
function gradient, which uses a central difference algorithm to compute the
derivatives.

The sequence of age-specific mortality changes experienced by Russian males
makes them an interesting example to examine how indices differ in their sen-
sitivity (Anand et al. 2001; Shkolnikov et al. 2003). From 1958 to 2006, infant
mortality declined substantially, from around 47 to 12 deaths per thousand
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live births. This decline was particularly rapid from 1958–1968. At the same
time, adult mortality, especially between ages 40 and 50 years, fluctuated
a great deal. Mortality over these ages increased slowly but steadily until
the mid-1980s, then declined rapidly between 1984 and 1987 following the
anti-alcohol campaigns, and then increased steeply with the mortality crisis
brought on by the upheavals of transition (Leon et al. 1997).

Figure 4 shows each index relative to its level in 1959, calculated from birth.
Apart from the IQR all indices show that lifespan variation decreased during
the period, with large fluctuations in the interim. The S and V showed less
volatility than the other indices while T , G and IQR showed the most.
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Figure 4: The indices of lifespan variability for Russian males, measured
relative to their values in 1959. All indices were calculated from period
lifetable data, 1959-2008, from the Human Mortality Database.

Figure 5 presents the LTRE decomposition of life expectancy and of the in-
dices, relative to their starting value, computed using equation (17). Reduc-
tions in infant, child, and adolescent mortality led to gains in life expectancy,
but increased mortality of adults age 20-70 tempered these gains. The pos-
itive contributions from reduced adult mortality during 1984–1987 are also
visible.

The indices of variability show a different pattern. Their changes are a bal-
ance of strong negative contributions from infant and, to a lesser extent, child
mortality, and positive contributions from mortality in ages 20-50. Thus the
change in variability (no matter how it is measured) is a balance of contri-
butions from these two age ranges.
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Figure 5: The proportional contribution of changes in age-specific mortality
to the changes in life expectancy, e0 and in each index, measured relative
to their values in 1959. Values were calculated by integrating the LTRE
contributions calculated from (15). Note that the color scale changes by
a factor of 10, in order to make contributions from all ages visible on the
graphs. Calculations were based on period lifetable data for Russian males,
1959-2008, from the Human Mortality Database.
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7 Conclusion

We compared seven indices of lifespan variation, all of which largely corre-
lated with one another over the mortality schedules found in the 6860 lifeta-
bles of the Human Mortality Database. Using matrix differentiation tech-
niques we derived the expressions for the sensitivities and elasticities of all
indices. We compared these sensitivities under different age-at-death profiles
and related changes over time in the indices to the underlying sensitivities
through a LTRE decomposition.

The aim of this paper was not to come out in favor of any one method
of measuring lifespan variation but rather to make explicit the differences
in the underlying sensitivities of each index to age-specific mortality. This
is essential for formulating any larger normative concept of inequality or
variation. It is also clear from this analysis that some indices are better
suited to certain tasks than others. The MLD, T and V indices are so
sensitive to infant mortality that they are not ideal candidates for studies
over the entire age range, if adult mortality is also of interest. In comparing
distributions above childhood, however, they become more suitable indices,
particularly if there is a strong aversion to death at younger versus older ages.
The IQR differs the most from the other indices. Although it has great
intuitive appeal, it can be expected to deviate from the other six indices
of variation the most often. Unless a clearly defined concept of variation
is specified outright, we would recommend using two or more indices with
different sensitivity patterns before coming to any strong conclusions about
the magnitude or direction of change in lifespan variability.
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8 Appendix A - Sensitivity Results and Deriva-

tions

This appendix provides details of the derivations. We begin with a summary of
some basic matrix calculus techniques, and then present the derivations of the
sensitivities of the indices of lifespan variation.

8.1 Matrix calculus preliminaries

The indices of lifespan variation in Table 3 are functions of scalars, vectors and
matrices. Matrix calculus permits differentiation of all three. The derivative of a
scalar y with respect to a scalar x is the derivative dy

dx familiar from basic calculus.
The derivative of a n× 1 vector y with respect to a scalar x is the n× 1 vector

dy

dx
=


dy1
dx
...

dyn
dx

 . (18)

The derivative of a scalar y with respect to a m× 1 vector x is the 1×m gradient
vector

dy

dxT
=

(
∂y

dx1
· · · ∂y

dxm

)
. (19)

The derivative of an n× 1 vector y with respect to a m× 1 vector x is the n×m
Jacobian matrix, whose (i, j) entry is the derivative of yi with respect to xj :

dy

dxT
=

(
dyi
dxj

)
. (20)

The derivatives of matrices are computed by transforming the matrices into column
vectors using the vec operator and applying the rules for vector differentiation.
Thus the derivative of the m× n matrix Y with respect to the p× q matrix X is
the mn× pq matrix

dY

dX
=

dvecY

dvecTX
. (21)

For notational simplicity we denote (dvecX)T as dvecTX.
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These definitions imply the chain rule for matrix calculus; if Y is a function of X,
and X is a function of Z, then

dvecY

dvecTZ
=

dvecY

dvecTX

dvecX

dvecTZ
. (22)

Matrix derivatives are constructed by forming differentials, where the differential
of a matrix (or vector) is the matrix (or vector) of differentials of the elements; i.e.

dX = (dxij) (23)

If, for some matrix Q, it can be shown that

dy = Qdx (24)

then according to the “first identification theorem” of Magnus and Neudecker
(Magnus and Neudecker 1985)

dy

dxT
= Q. (25)

We will frequently obtain expressions of the form (25) using a theorem originally
due to Roth (Roth 1934), that if Y = ABC then

vecY = (CT ⊗A) vecB. (26)

We will also simplify expressions involving Kronecker products using

(A⊗B) (C⊗D) = AC⊗BD. (27)

whenever AC and BD are defined.

More details on matrix calculus can be found in Magnus and Neudecker (1988). A
good mathematical introduction is in Abadir and Magnus (2005), and demographic
discussions appear in Caswell (2007; 2008; 2010).

8.2 Sensitivities of the indices of lifespan variation

8.2.1 Preliminaries

Differentiating the various indices made use of the following sensitivities. The
vector of life expectancies as a function of age is given by

ηT = eTN (28)
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The derivative of this vector with respect to mortality is (Caswell 2006; 2009)

dη

dθT
= (I⊗ eT) (NT ⊗N)

dvecU

dθT
. (29)

The life expectancy at birth is given by

η1 = ηTe1 (30)

and thus its derivative is

dη1
dθT

= (eT
1 ⊗ eT)

dvecN

dθT
(31)

= (eT
1N

T ⊗ eTN)
dvecU

dθT
(32)

The distribution of age at death is given by the vector

f = MNe1. (33)

Its derivative is given by (Caswell 2010),

df

dθT
= (eT

1N
T ⊗ I)

dvecM

dθT
+ (eT

1N
T ⊗B)

dvecU

dθT
(34)

The derivatives of U and M depend on the structure of the life cycle; in the age-
classified case under consideration here, M contains the probabilities of death qi on
the diagonal, and U contains the probabilities of survival 1−qi on the subdiagonal.

8.2.2 Life disparity η†

The disparity can be written
η† = fTη. (35)

As shown in Caswell (2010, 2011),

dηT = (dfT)η + fT (dη) , (36)

and thus
dη†

dθT
= ηT df

dθT
+ fT

dη

dθT
(37)

where df/dθT is given by (34) and dη/dθT is given by (29).
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8.2.3 Gini coefficient

In matrix form, the Gini coefficient is given by

G = 1− 1

η1
eT [` ◦ `] (38)

where the survivorship vector is

` = e−Cf (39)

Differentiating (38), noting that η1 is a scalar, gives

dG =
1

η21
eT (` ◦ `) dη1 −

2

η1
eT [` ◦ (d`)] (40)

We apply the vec operator to both sides of (40) and obtain

dG =
1

η21
eT (` ◦ `) dη1 −

2

η1
`Td` (41)

Differentiating (39) gives d` = −Cdf ; substituting this into (41) and using the
chain rule gives

dG

dθT
=

1

η21
eT (` ◦ `) dη1

dθT
+

2

η1
`TC

df

dθT
(42)

where dη1/dθ
T is given by (32)

8.2.4 Mean Logarithmic Deviation

The mean logarithmic deviation in matrix notation is

MLD = fT [e log η1 − logx] (43)

where the logarithm is applied elementwise. Differentiating (43) gives

dMLD = (dfT) [e log η1 − logx] + fTe (d log η1) (44)

However, fTe = 1 because f is a probability distribution. Using this fact and also
noting that d log η1 = (1/η1)dη1, we obtain

dMLD

dθT
= [eT log η1 − logxT]

df

dθT
+

1

η1

dη1
dθT

. (45)

where dη1/dθ
T is given by (32) and df/dθT is given by (34).
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8.2.5 Theil’s index

The expression for Theil’s index in matrix notation is

T = fT
[
x

η1
◦ log

x

η1

]
(46)

where the logarithm is applied elementwise. Differentiating (46) term by term
yields

dT = (dfT)

[
x

η1
◦ log

x

η1

]
+ fT

[
d

(
x

η1

)
◦ log

x

η1

]
+ fT

[
x

η1
◦ d
(

log
x

η1

)]
. (47)

However,

d

(
x

η1

)
= − x

η21
dη1 (48)

d

(
log

x

η1

)
= d (logx− e log η1)

= − e

η1
dη1 (49)

Substituting (48) and (49) into (47), and transposing the first term, gives

dT =

(
xT

η1
◦ log

xT

η1

)
df − fT

[(
x

η21
◦ log

x

η1

)
+

(
x

η1
◦ e

η1

)]
dη1 (50)

Simplifying equation (50) and expressing the result in terms of a parameter vector
θ gives

dT

dθT
=

(
xT

η1
◦ log

xT

η1

)
df

dθT
−
(
T

η1
+

fTx

η21

)
dη1
dθT

(51)

where dη1/dθ
T is given by (32) and df/dθT is given by (34).

8.2.6 The variance and standard deviation of longevity

The variance in longevity, conditional upon survival to age class i, is given by the
vector v, which satisfies

vT = eTN (2N− I)− ηT ◦ ηT (52)

Caswell (2006, 2009, 2010) shows that

dv

dθT
=

[
2 (NT ⊗ eT) + 2 (I⊗ eTN)− (I⊗ eT)

]
dvecN

dθT
− 2diag (η)

dη

dθT
(53)
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where dη/dθT is given by (29) and

dvecN

dθT
= (NT ⊗N)

dvecU

dθT
. (54)

The standard deviation of longevity is given by the vector

s =
√
v (55)

where the square root is taken elementwise, and its sensitivity was derived in
Caswell (2010),

ds

dθT
=

1

2
diag (s)−1

dv

dθT
. (56)

8.2.7 The inter-quartile range

The inter-quartile range is defined implicitly in terms of the distribution of ages

at death. Let f (x) be a probability density function and F (x) =

∫ x

−∞
f (s) ds be

the cumulative distribution. The qth quantile is the value x̂ satisfying

F (x̂) = q (57)

Let F (x̂1) = q1 and F (x̂2) = q2, assuming that q2 > q1. The inter-quantile range
is

R (q1, q2) = x̂2 − x̂1 (58)

The special case of the inter-quartile range refers to R (0.25, 0.75).

Now we choose a set of probabilities of interest

q =

q1...
qh

 (59)

and let x̂ be the vector of quantiles that satisfy

F [θ, x̂ (θ)] = q, (60)

where the distribution f (·) depends on a parameter vector θ, of dimension p× 1.

Next we differentiate equation (60)

∂F

∂θT
dθ +

∂F

∂x̂T
dx̂ = 0 (61)
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and solve for dx̂, to obtain

dx̂ = −
(
∂F

∂x̂T

)−1( ∂F
∂θT

)
dθ. (62)

The first identification theorem implies that

dx̂

dθT
= −

(
∂F

∂x̂T

)−1( ∂F
∂θT

)
(63)

The first term on the right hand side of of equation (63) is

(
∂F

∂x̂T

)−1
=


1

f(x̂1)
0

. . .

0 1
f(x̂h)

 (64)

while the second term is

(
∂F

∂θT

)
=


∂F (x̂1)
∂θ1

· · · ∂F (x̂1)
∂θp

...
...

∂F (x̂h)
∂θ1

· · · ∂F (x̂h)
∂θp

 (65)

The product of equations (64) and (65, following equation (63) gives

(
dx̂

dθT

)
= −


1

f(x̂1)
∂F (x̂1)
∂θ1

· · · 1
f(x̂1)

∂F (x̂1)
∂θp

...
...

1
f(x̂h)

∂F (x̂h)
∂θ1

· · · 1
f(x̂h)

∂F (x̂h)
∂θp

 (66)

The sensitivity of the inter-quantile range is the difference between row j and row
i of (66).

dR(i,j)

dθT
=
dx̂j
dθT
− dx̂i
dθT

(67)

When f (x) is a discrete distribution, the quantiles will have to be interpolated.
This is what we did to find the sensitivity of the IQR with quartiles x̂3 and x̂1.
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9 Appendix B - Matlab code

9.1 Function needed in your working directory, titled
vec.m

function v=vec(x)

v=x(:);

9.2 Main code

% Code developed by Alyson van Raalte and Hal Caswell, November 2011
% NEED TO HAVE FILE 'vec.m' in working directory
% INPUT DATA are "q" a vector of death probabilities
% (we used ages 0 to 110+ from HMD),
% and "x", a vector of the average age at death within each age interval,
% (i.e. {a0, 1.5, 2.5, ..., 110.5, 110 + a(omega)} − total length = q+1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Preliminaries
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% defining survival probabilities
p=1−q;

% # of transient states + 1, because in construction of U first row is zero
s=length(p)+1;

% # transient states only
s2=length(p);

% other things we will need later
I = speye(s); % identity matrix
e = ones(s,1); % column vector of ones for summations
e1 = [1,linspace(0,0,s2)]';

% C matrix is for calculating cumulative sums
for i=1:s

C(:,i) = [zeros(i,1);ones(s−i,1)];
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Markov chain formulation of longevity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% U matrix describes transient states in the Markov chain
U=sparse(diag(p,−1));

% N matrix, where (i,j) entry is the mean time spent in each age class i,

% conditional upon starting in age class j
N=inv(I−U);

% M matrix has probability of death at each age on diagonal
M=sparse(diag(1−p));
M(s,s)=1;

% The distribution of ages at death
B=M*N; % the complete distribution of ages at death
f = B*e1; % the distribution of ages at death from birth (or first age class)

% survivorship (alternatively ell=N*e1)
ell = e − C*f;

% remaining life expectancy at each age
mean eta = sum(N)' − 0.5;

% life expectancy at birth (or first age class)
eta = e'*N*e1 − 0.5;

% NB: in Markov chain formulations, the life expectancy at birth is always
% 0.5 years higher than that found by conventional life table methods,
% which is why we subtract 0.5 years

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Indices of lifespan variation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% variance in lifespan
V=(sum(N)*(2*N−I) − mean eta'.*mean eta')';

% standard deviation in lifespan
S=sqrt(V);

% e measure
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dagger eta=mean eta'*B;

% Theil's index
T = f'*((x*etaˆ(−1)).*(log(x*etaˆ(−1))));

% Mean Log Deviation
MLD = f'*(e*log(eta)−log(x));

% Gini coefficient
G=1−(1/eta)*e'*(ell.*ell);

% IQR calculations
F=[cumsum(f)]; % cumulative deaths
age=[0:s−1]';
xhat1=interp1(F(1:s−10),age(1:s−10),0.25);

% the 's−10' is in the code to handle zero deaths at oldest ages
xhat2=interp1(F(1:s−10),age(1:s−10),0.75);
IQR=xhat2−xhat1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SENSITIVITIES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% derivatives of U with respect to mortality change
for i=1:s−1

dU dmu=sparse(zeros(s,s));
dU dmu(i+1,i)=−p(i);
dvecU dmu(:,i)=vec(dU dmu);

end

%derivatives of M with respect to mortality change
for i=1:s−1

dM dmu=sparse(zeros(s,s));
dM dmu(i,i)=p(i);
dvecM dmu(:,i)=vec(dM dmu);

end

%derivative of f with respect to mortality change %should it be B or N
df dmu=kron(e1'*N',I)*dvecM dmu + kron(e1'*N',B)*dvecU dmu;

%sensitivity of expected longevity with respect to mortality change
deta dmu=kron(e1'*N',e'*N)*dvecU dmu;

%sensitivity of variance in longevity with respect to mortality change
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dV dmu = (2*kron((N')ˆ2,mean eta')...
+ 2*kron(N',mean eta'*N)...
− (I + 2*sparse(diag(mean eta)))*kron(N',mean eta'))...

* dvecU dmu;

%sensitivity of standard deviation with respect to mortality change
dS dmu=0.5*diag(1./S)*dV dmu;

%sensitivity of eta−dagger with respect to mortality change
deta dagger dmu =(kron(B(:,1)'*N',mean eta') ...

+ kron(N(:,1)',mean eta'*B))*dvecU dmu ...
+ kron(N(:,1)',mean eta')*dvecM dmu;

%sensitivity of Theil's with respect to mortality change
dT dmu = (x'*etaˆ(−1)).*log(x'*etaˆ(−1))*df dmu...

− (T*etaˆ(−1)+f'*x*etaˆ(−2))*deta dmu;

%sensitivity of MLD with respect to mortality change
dMLD dmu = (e'*log(eta)−log(x'))*df dmu+etaˆ(−1)*deta dmu;

%sensitivity of Gini with respect to mortality change
dG dmu = etaˆ(−2)*e'*(ell.*ell)*deta dmu + 2/eta*e'*diag(ell)*C*df dmu;

% sensitivity of IQR with respect to mortality change
% sensitivity of cumulative deaths with respect to mortality change

dF dmu=[zeros(1,s2);cumsum(df dmu)];

% the death density at the quantiles by interpolation
fxhat1=interp1(age,f,xhat1);
fxhat2=interp1(age,f,xhat2);
dFxhat1 dmuT=interp1([0:s]',dF dmu(:,:),xhat1);
dFxhat2 dmuT=interp1([0:s]',dF dmu(:,:),xhat2);

% finally taking sensitivities
dxhat dmu1 = −fxhat1ˆ(−1)*dFxhat1 dmuT;
dxhat dmu2 = −fxhat2ˆ(−1)*dFxhat2 dmuT;
dIQR dmu=dxhat dmu2−dxhat dmu1;

%%%%%%%%%%%%%%%%%%%%%%%
%ELASTICITIES
%%%%%%%%%%%%%%%%%%%%%%%

% elasticity of standard deviation
ES = (1./S(1))*dS dmu(1,:)*diag(1−p);
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% elasticity of variance
EV = (1./V(1))*dV dmu(1,:)*diag(1−p);

% elasticity of edagger
Eedag = (1./dagger eta(1))'*deta dagger dmu*diag(1−p);

% elasticity of Gini
EG = (1./G(1))*dG dmu*diag(1−p);

% elasticity of Theil's
ET = (1./T(1))*dT dmu*diag(1−p);

% elasticity of MLD
EMLD = (1./MLD(1))*dMLD dmu*diag(1−p);

% elasticity of IQR
EIQR = (1./IQR(1))*dIQR dmu*diag(1−p);

%%%%%%%%%%%%%%%%%%%%%%%%
%SAVING THE RESULTS
%%%%%%%%%%%%%%%%%%%%%%%%

res = [stV stedag stS stT stMLD stIQR stG EV Eedag ES ET EMLD EIQR EG];
res=full(res); % MATLAB can't save sparse arrays
save res.txt res −ascii;
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10 Appendix C - Figures depicting the sen-

sitivity and elasticity of indices calculated

from age 10
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Figure 6: The sensitivity of each index conditional upon survival to age 10
with respect to mortality change at different ages. The sensitivities were
standardized to the value of each index, i.e. y10

dy
dθ

, to make them comparable.
Note the difference in scale between the top and bottom panels, plotted
separately to more clearly delineate behaviour of the indices at early and
later ages. French males, period lifetable data from the HMD.
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Figure 7: The proportional change in the index calculated conditional upon
survival to age 10 from a one percent change in mortality at each age on the
x axis. French males, period lifetable data from the HMD.
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