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Abstract 

Background: Different mechanisms regulating age-dynamics of physiological variables may 

affect the risk of onset of cancer. The impact of such mechanisms can be evaluated indirectly 

from longitudinal measurements of physiological variables.   

Methods: We applied the proportional hazards model and the stochastic process model of aging 

to data on ages at onset of cancer (all sites but skin) and longitudinal measurements of hematocrit 

in the Framingham Heart Study (original cohort). 

Results: Analyses using the proportional hazards model showed a marginally significant effect 

of hematocrit on the risk of onset of cancer (all sites but skin) in the Framingham original cohort 

(estimate of regression parameter: -0.021 (p=0.04); hazard ratio (95% confidence interval) for a 

change of 10% in hematocrit: 0.808 (0.659; 0.991)) suggesting a generally negative effect of 

lower hematocrit values on the risk of cancer development. Analyses using the stochastic process 

model revealed non-symmetric and age-dependent U-shapes of incidence rates as a function of 

hematocrit in both sexes. We found statistically significant (p<0.0001) age related decline in 

adaptive capacity associated with hematocrit regulation indicating that at older ages more time is 

needed for adjusting this value. 

Conclusions: The value and longitudinal dynamics of hematocrit are associated with the risk of 

onset of cancer. The aging related decline in adaptive capacity and resistance to stresses, as well 

as accumulation of allostatic load are the factors which contribute to longitudinal dynamics of 

this variable.  

 

Key words: cancer, hematocrit, Framingham Heart Study, stress resistance, adaptive capacity, 

physiological norm, allostatic load, age trajectory 
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1. Introduction 

Longitudinal data on aging, health, and longevity provide information on individual age 

trajectories of different physiological variables. Such trajectories can be analyzed in connection 

with mortality/morbidity risks using appropriate statistical tools. Associations between selected 

characteristics and the risks can be evaluated using standard statistical approaches (such as the 

Cox proportional hazards model), which can be useful at the initial step of analyses when the 

presence of the effects needs to be identified. However, such methods generally may not be 

appropriate for studying biological mechanisms relating the observed age trajectories of 

physiological variables and risks of death or diseases, because these methods ignore existing 

knowledge about regularities of aging-related changes in an organism and underlying biological 

mechanisms and concepts of aging available in the literature.  

The stochastic process model (SPM) of aging [1] serves as a useful tool for analyzing 

respective mechanisms and their relation to the mortality/morbidity risks from longitudinal data 

on age trajectories of physiological variables and data on ages at onset of disease or ages at 

death. This approach has been applied in different settings to analyzing data on longitudinal 

measurements of different physiological variables (such as blood glucose, body mass index, 

cholesterol, diastolic blood pressure, hematocrit, pulse pressure, and pulse rate) in relation to 

risks of death or onset of “unhealthy life” [2-5]. It was also applied to the “indices of cumulative 

deficits” (which proved to be a useful method for analyses of a wide spectrum of information in 

relation to health- and aging-related changes and represents a better characteristic of the aging 

phenotype than chronological age) and mortality risks [6, 7], and analyses of trajectories of 

medical costs in relation on mortality risks [8].  
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In this paper we use this approach to investigate mechanisms linking age trajectories of 

hematocrit and risks of onset of cancer. For this purpose, we apply the model by Yashin et al. [1] 

to analyze relationship between the risk of onset of cancer (all sites but skin) and longitudinal 

measurements of hematocrit in participants of the Framingham Heart Study (original cohort). We 

evaluate different components of the aging process, such as the decline in resistance to stresses 

and adaptive capacity, and accumulation of allostatic load, from age trajectories of hematocrit 

and data on onset of cancer, and show how these processes can influence the risk of onset of 

cancer.  

2. Data and Method 

2.1. Framingham Heart Study (FHS) data  

The FHS Original Cohort consists of 5,209 respondents (nearly all are Caucasians, 46% 

male) aged 28-62 years at baseline and residing in Framingham, Massachusetts, between 1948 

and 1951, and who had not yet developed overt symptoms of cardiovascular disease or suffered a 

heart attack or stroke [9, 10]. The study continues to the present with biennial examinations (30 

exams to date; data from exams 1-26 were available for this study) that include detailed medical 

history, physical exams, and laboratory tests. Examination of participants, including an 

interview, physical examination, and laboratory tests, has been taken biennially. The FHS 

Original Cohort has been followed for more than 60 years (information on about 55 years of 

follow-up was available for this study) for the occurrence of diseases (including cancer) and 

death through surveillance of hospital admissions, death registries, and other available sources.  

The FHS cancer dataset contains only primary cancers (ICD-O behavior codes of 2 or 3) and 

does not include metastatic cancers (ICD-O behavior code of 6). Only first occurrence of site and 

cell type is included in this data set. In this study we used data on first occurrence of cancer (all 
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sites but skin; i.e., all WHO ICD-O topography codes except 173) from the follow-up data to 

calculate the age at onset of cancer for FHS Original Cohort participants. Longitudinal 

measurements of hematocrit from exams 4-9 and 11-20 were used in this study.  

The dataset available for this study contained information on 5,079 participants of the 

Original FHS cohort (2,785 females; 2,294 males). We excluded from analyses individuals with 

onset of cancer (all sites but skin) before the entry into the FHS and individuals for whom 

measurements of hematocrit were not available in any exam. The resulting sample of 4,611 

individuals (2,546 females; 2,065 males) was used in analyses of the stochastic process model 

described below. There were 784 participants (384 females; 400 males) who had onset of cancer 

occurring within two years since the last observation of hematocrit, or at some point between two 

observations of hematocrit, and respective ages at onset were calculated for these individuals. 

Individuals without the occurrence of cancer within two years (which is the average period 

between the exams in the original FHS cohort) since the last observation of hematocrit were 

censored at respective ages, or at the latest ages for which information on cancer was available, 

whichever were the earliest. Any measurements of hematocrit after the ages at onset of cancer or 

ages at censoring were not analyzed in the model.  

2.2.  Statistical Analysis: The Model Describing Age Dynamics of Physiological 

Variables and Risks of Cancer and Its Application to FHS Data 

We started with analyses of cancer incidence using the proportional hazards model with 

measurements of hematocrit considered as a time-dependent covariate. The models were 

adjusted for sex and age at the first exam. We also performed analyses stratified by sex. These 

calculations have been performed using PROC PHREG in SAS/STAT 9.2. 

Such analyses, however, do not take into account that different values of hematocrit may 
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minimize the risk of cancer at different ages. More subtle analyses of relationship between the 

risk of cancer and longitudinal dynamics of hematocrit used the stochastic process model of 

aging which incorporates several major concepts of aging [1, 4]. A discrete-time version of the 

model (with values of a physiological variable evaluated at one-year age intervals using linear 

approximation of respective observations in the adjacent FHS exams) was applied to data on 

onset of cancer (all sites but skin) in females and males in the FHS original cohort. The details of 

the likelihood estimation procedure are given in [1]. Below we provide specifications of the 

versions of the models used in this study. 

The age dynamics of a physiological variable (i.e., hematocrit in our applications) with 

age is described by the following stochastic differential equation [1, 4]: 

01 ,)())()(( YdWtbdttfYtadY ttt .   (1) 

Here Yt is the value of a physiological variable at age t. The function f1(t) describes the effect of 

allostatic adaptation, i.e., the trajectory that the physiological variable is forced to follow by 

homeostatic forces in the presence of external disturbances described by a Wiener process Wt 

(which is independent of the initial normally distributed value Y0). The strength of homeostatic 

forces is characterized by the negative feedback coefficient a(t): larger values of this function 

correspond to faster return of the trajectory of the physiological variable to the allostatically 

prescribed values f1(t). Therefore, the decline in the absolute value of this function with age 

represents the decline in adaptive (homeostatic) capacity with age (“homeostenosis”) which has 

been shown to be an important characteristic of aging [11-14].  

The diffusion coefficient b(t) in (1) was modeled constant ( 1)(tb ). Initial values of a 

physiological variable were assumed normal, )),((~ 0010
tfNYt , where the parameter 0  is 

estimated from the data. We used a linear approximation of the decline in adaptive capacity with 
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age, i.e., the feedback coefficient a(t): tbata YY)(  (with 0Ya and 0Yb ). Description of 

f1(t) is provided below. 

The concept of allostatic adaptation implicitly assumes the notion of “deviation from the 

norm,” that is, the “normal” state of an organism corresponding to “optimal” functioning in 

terms of minimizing respective risk (e.g., onset of a disease). The studies of how persistent 

external unfavorable conditions get “under the skin” of affected person increasing his/her 

susceptibility to diseases and death [15, 16] provide evidence that many such conditions affect 

set-points of physiological homeostasis changing physiological balance from the “normal”  to 

“abnormal” state. This means that the trajectory of a physiological variable that an organism is 

forced to follow under the persistent external disturbances (f1(t)) may be different from the 

“optimal” trajectory minimizing the risk (i.e., the trajectory which the homeostatic regulation 

would force to follow in the absence of external disturbances), which we denote f(t). The 

difference between f1(t) and such “optimal” trajectory (which can be interpreted as age-specific 

“physiological norm”) provides the measure of the allostatic load.  

Specification of the functional form of the cancer incidence rate as a function of age and 

the value of a physiological variable (hematocrit in our case), which we will denote ),( tYt , 

deserves a special attention. It is clear by definition of the “optimal” age trajectory f(t) that 

deviations of a physiological variable from respective “optimal” levels for each age (represented 

by this function f(t)) increase individual’s chances to develop the disease. Different studies 

observed U- or J- shape of the risks as functions of various physiological variables [17-27]. 

Thus, it may be argued based on these observations, that a quadratic function can model 

dependence of the risk on deviations of trajectories of physiological variable Yt from the optimal 

trajectory f(t) [2-4, 6, 8, 28]. Nevertheless, the actual functional form of ),( tYt  is unknown. 



8 

 

Thus using different formulas for description of ),( tYt  can be helpful to check whether 

different specifications of the functional form of ),( tYt  lead to the same conclusions [6, 7] or to 

select the best-fitting model.  

We used two specifications for the hazard rate (i.e., cancer incidence rate in our 

applications). First, we used the quadratic hazard as in [1, 4]: 

)())(()(),( 1

2

0 ttfYtYt tt .    (2) 

Here )(0 t  is the “residual” or “baseline” hazard that represents the incidence rate which would 

be observed if the physiological variable Yt followed the “optimal trajectory” represented by the 

function f(t). It models the effect of other factors (such as the senescence process) that impact the 

incidence rate. The non-negative multiplier )(1 t  in the quadratic part of the hazard 

characterizes sensitivity of the risk function (incidence rate) to deviations of a physiological 

variable from the “optimal” function f(t). This multiplier can be interpreted in terms of the 

“robustness,” or “vulnerability,” component of stress resistance. When the value of this function 

increases (i.e., the U-shape of the risk narrows), an organism becomes more vulnerable to 

deviations from the “normal” state caused by external disturbances (because the same magnitude 

of deviation from the “optimal” trajectory results in a larger increase in the risk). An increase in 

this index with age (that is, the decline in stress resistance) can be considered as a manifestation 

of the senescence process [6, 29-34]. We considered the non-symmetric U-shape of the hazard, 

i.e., we assumed that the “price” for deviations of the age trajectory of physiological variable to 

the left (i.e., to smaller values) and to the right (i.e., to larger values) from the “optimal” 

trajectory can be different. We specified )(1 t  as a linear function of age: )()( 111 tt , if 

)(tfYt , where tbat
1111

)(11 , and )()( 121 tt , if )(tfYt , where 
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tbat
1212

)(12 . 

We used two different specifications of the baseline hazard )(0 t : the logistic (gamma-

Gompertz) function ))(1()()(
0

0

0

2

2

0

00

t

duutt , where 
tb

eat 0

0
)(0

0 (the version of the 

model with this baseline hazard is denoted as Model 1 in the text), and the gamma-Weibull 

function: 

t

duutt
0

0

0

2

2

0

00 ))(1()()( , where 
10

0
0

0

0

0

)(
)(

b

b
t

a

b
t  (Model 2). The 

specific choices for the baseline hazard are motivated by observations that cancer incidence rates 

decelerate or even decline at advanced ages [32, 35-39]. 

Second, we used the stochastic process model with the exponential form of ),( tYt : 

))}(())()(())(())()((exp{)(),( 12110 tfYItfYttfYIYtfttYt ttttt ,  (3) 

where I(.) is an indicator function, which equals 1 if the inequality in the parentheses is true, and 

0 otherwise, and the functions )(11 t  and )(12 t  are specified above. Two different baseline 

hazards were used: gamma-Gompertz (Model 3) and gamma-Weibull (Model 4) hazards (see 

formulas above). 

To represent the “optimal” trajectory f(t) in the models, we calculated the average age 

trajectory (in 5-year age groups, from ages 40-44 to 90+) of hematocrit in individuals who 

survived until advanced ages ( 90  for females, 85  for males) without developing cancer. 

These empirical trajectories were then fitted by cubic polynomials and these fitted trajectories 

were used as the “optimal” trajectories f(t) in the models (see Fig. 1). 

Fig. 1 is about here 

We assumed that the “allostatic trajectory” f1(t) (which we denote the “mean allostatic 

state”) is related to the “optimal” trajectory f(t) as follows: 
1

)()(1 ftftf . The absolute value 
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of parameter 
1f
represents the measure of “allostatic load” (averaged across all ages). 

In each model, we tested statistical hypotheses about factors and mechanisms affecting 

the dynamic properties of the age trajectories of hematocrit and their relation to risk of cancer. 

All such hypotheses were tested using the likelihood ratio test. For example, to test the 

hypothesis about the decline in adaptive capacity with age in Model 1, we estimated the 

likelihood functions in the “general” model with such a decline (that is, with a linear a(t) as 

specified above) and in the “restricted” model without such a decline (i.e., with 0Yb ), where 

all other functions (except a(t)) are specified similarly in both models, and then applied the 

likelihood ratio test. As Models 1-4 are not nested, we compared different models to define the 

best-fitting model using the Akaike Information Criterion (AIC) [40]. All statistical analyses of 

the stochastic process model (the likelihood optimization and the statistical tests) have been 

performed using Optimization and Statistical Toolboxes in MATLAB R2010a.   

3. Results 

Analyses using the proportional hazards model showed a marginally significant effect of 

hematocrit on the risk of onset of cancer (all sites but skin) in the Framingham original cohort 

(estimate of regression parameter: -0.021; p=0.04; hazard ratio (95% confidence interval) for a 

unit change in hematocrit: 0.979 (0.959; 0.999); hazard ratio for a change of 10% in hematocrit: 

0.808 (0.659; 0.991)). Analyses stratified by sex did not show a significant effect, although the 

estimates of the regression parameter were still negative and the absolute value was smaller for 

females. This suggests a generally negative effect of lower hematocrit values on the risk of 

cancer development. Such analyses, however, do not take into account that different values of 

hematocrit may minimize the risk at different ages. More subtle analyses of relationship between 
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the risk of cancer and longitudinal dynamics of hematocrit that use the stochastic process model 

[1] are presented in Table 1 and Figs. 2-3. 

Estimates of parameters of the baseline incidence rate, )(0 t , the multipliers )(11 t  and 

)(12 t  in the quadratic (or exponential) parts of the hazard, the age-specific adaptive capacity 

a(t), and other parameters of Models 1-4  are given in Table 1. The last column (“Diff. AIC”) 

represents the difference between AIC for respective models and the model with minimal AIC 

(separately for females and males). It shows that for females the best fitting model is Model 2 

(i.e., the model with the quadratic hazard and the gamma-Weibull baseline hazard), with Model 1 

close behind. For males, the best fitting model is Model 3 (i.e., the model with the exponential 

hazard and the gamma-Gompertz baseline hazard) and Model 4 gives a slightly worse fit. The 

estimates of different components in Models 1-4 are described below. 

Table 1 is about here 

Fig. 2 is about here 

All four models consistently show that the absolute value of the feedback coefficient in 

the equation for the age dynamics of physiological variable (a(t)) tends to decline with age (see 

panel B in Fig. 2 and Table 1). This decline (which is interpreted as the decline in adaptive 

capacity [1, 4, 28, 41]) is highly significant in all models (the null hypotheses on no decline, i.e., 

0Yb , are rejected in all models with p<0.0001, see Table 1, column bY). The patterns of 

decline virtually coincide in females and males.  

Null hypotheses on zero quadratic (or exponential) part of the hazard, i.e., 

0)()( 1211 tt , are rejected in all models (p<0.0001 for Models 3 and 4 for males and 

p<0.01 in all other cases). All four models reject at different significance levels (from p<0.0001 

to p<0.01) the null hypotheses on zero multiplier )(11 t , see column 
11

a  in Table 1. This means 



12 

 

that deviations to smaller than optimal values of hematocrit significantly increase the risk of 

cancer development in both females and males. The null hypotheses on zero multiplier )(12 t  

are rejected at 0.05 level in all models but only for males (see column 
12

a  in Table 1). This 

means that deviations to larger than optimal values of hematocrit significantly increase the risk 

of cancer development in males but not in females. The results on age dependence of multipliers 

)(11 t  and )(12 t  are mixed and not significant for females (see columns 
11

b  and 
12

b  in Table 

1) and for the right parts in males (see column 
12

b  in Table 1). Therefore, no reliable 

conclusions can be made on the age dependence in these cases. The results for age-dependence 

of )(11 t  in males are consistent in all models (see column 
11

b  in Table 1). All estimates are 

positive and significant at 0.05 level in Models 1, 2, and 4 and marginally significant in Model 3 

(p=0.056). Fig. 2 (panels C and D) illustrates the patterns of )(11 t  and )(12 t  for females and 

males in the “optimal” models (i.e., Model 2 for females and Model 3 for males).  

In all models, the estimates of parameter 
1f
 are different from zero and are higher in 

females than in males. The null hypotheses on 0
1f

 (i.e., that “mean allostatic state” )(1 tf  

coincides with the “physiological norm” )(tf ) are rejected (p<0.0001) for females in all models 

(see column 
1f
 in Table 1).  

Fig. 2 (panel A) shows that for both sexes the pattern of the baseline incidence rate 

decelerates with age (or even slightly declines with age for females). The null hypotheses on no 

decline in baseline hazards at old ages (i.e., 02 ) is rejected at various levels of significance 

in Models 1 and 3 for females and Models 1, 3 and 4 for males (see column 2  in Table 1).  
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Fig. 3 displays contour plots of hazard rate ( ),( tYt ), relative risk 

( )(/),(),( 0 tYtYtRR tt , where )(0 t  is the baseline rate) and the absolute increase in the risk 

compared to the baseline ( )(),( 0 tYt t ) as functions of ages (t) and values of hematocrit at 

these ages (Yt) estimated from the best-fitting models (i.e., Model 2 for females and Model 3 for 

males. Fig. 3A and 3B show clear U-shapes of hazard rates with non-symmetric left and right 

parts for both females and males. Both sexes have a substantial increase in cancer risk at smaller 

then “optimal” values of hematocrit, with a peak at ages 80-85 for females and about 90 for 

males. At the oldest old ages, however, the same low values of hematocrit result in smaller 

cancer risk than that at the ages 80-90. Deviations to the larger than “optimal” values of 

hematocrit in females do not produce a substantial increase in the risk, which is only observed at 

the oldest old ages. For males, the pattern is reversed – at younger ages deviations to larger 

values increase the risk but the effect diminishes at the oldest old ages. This reflects the patterns 

of estimates of the quadratic (or exponential) terms in the hazard (see Table 1 and Fig. 1).  The 

absolute increase in the risk compared to the baseline ( )(),( 0 tYt t , Figs. 3E and 3F) shows 

the same pattern as those of the hazard rates in Fig. 3A and 3B. The relative risk also shows non-

symmetric U-shapes in both sexes (Figs. 3C and 3D). The shape of relative risk resembles that of 

the absolute increase for males (except that the maximal relative risk for larger than “optimal” 

values of hematocrit is concentrated at younger ages whereas the maximal absolute increase is at 

the ages around 80). For females, the picture is similar for the relative risk and the absolute 

increase in the risk for larger than “optimal” values of hematocrit. For smaller than “optimal” 

values of hematocrit, however, the maximal absolute increase is reached at ages about 80, 

whereas the largest relative risk is observed at younger ages (where the baseline hazard is the 

smallest). 
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Fig. 3 is about here 

4. Discussion  

In this paper we investigated the relationship between the age dynamics of hematocrit 

and risk of cancer using data on ages at onset of cancer (all sites but skin) and longitudinal 

measurements of hematocrit in the Framingham Heart Study (original cohort). Analyses using 

the proportional hazards model suggested a generally negative effect of lower hematocrit values 

on the risk of cancer development. We also investigated how different mechanisms regulating 

the age dynamics of physiological variables (e.g., hematocrit in our applications) may affect the 

risk of onset of cancer applying the stochastic process model of aging [1]. These analyses 

revealed non-symmetric and age-dependent U-shapes of incidence rates as a function of 

hematocrit in both sexes, as discussed below.  

We found that deviations to smaller than optimal values of hematocrit significantly 

increase the risk of cancer development in both females and males and that deviations to larger 

than optimal values of hematocrit significantly increase the risk of cancer development in males 

but not in females.  

The decline in stress resistance is an important characteristic of the aging process [6, 29-

34] which can lead to development of aging-related diseases and death. Available longitudinal 

studies typically contain very limited (if any at all) information on external disturbances 

affecting individuals during their life course and the intensities and magnitudes of persistent 

external stresses that affect an organism’s functioning are generally unknown. Therefore, the 

direct estimation of such “stresses” from the data is not possible. Our approach makes possible 

indirect estimation of decline in stress resistance associated with deviations of physiological 

variables from the “optimal” trajectories minimizing the risks of disease development or death. 
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In this paper, we revealed age-dependence of the multiplier )(11 t  for males. This means that the 

width of the left part (i.e., smaller than optimal values) of the U-shape of the risk (as a function 

of hematocrit) is getting narrower with age and the range of values of hematocrit corresponding 

to a “tolerable” increase in the risk is also getting narrower with age. Hence the “price” for the 

same magnitude of deviation to smaller than “optimal” values (in terms of an absolute increase 

in the risk of onset of cancer compared to the baseline level at that age) becomes higher for 

males at older ages. The higher values of this function ( )(11 t ) at old ages suggest that males 

have lower resistance to stresses measured in terms of increase in the risk of onset of cancer due 

to deviation of hematocrit to smaller than “optimal” values at respective ages. The results also 

indicate that the right part of the U-shape of the risk (associated to larger than normal deviations 

of hematocrit with age) does not narrow significantly with age. This suggests that the “price” 

(i.e., an increase in the risk of cancer development) for the deviations to larger than “optimal” 

values of hematorcit does not change significantly with age in both sexes. 

The decline in adaptive capacity is an important feature of aging ([11-14]) which may 

contribute to development of aging-related diseases and death. However, direct measurements of 

adaptive capacity are typically lacking in available longitudinal studies of aging, health, and 

longevity. Therefore, one needs to rely on some indirect methods to evaluate this component 

from the data. The use of the feedback coefficient in the equation for the age dynamics of 

physiological variable in our model allows us to evaluate this from the data because the absolute 

value of this feedback coefficient characterizes the adaptive capacity, see [1, 4, 28, 41]. In our 

applications to onset of cancer and hematocrit, we found that the decline in adaptive capacity 

with age is highly significant in all models and the patterns of decline virtually coincide in 

females and males. This result indicates that at older ages more time is needed for the trajectory 
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of hematocrit to approach the one that the organism tends to follow (i.e., “mean allostatic state” 

f1(t)), compared to younger ages.  

In all models, the estimates of parameter 
1f
 are different from zero and are higher in 

females that in males. Non-zero estimates indicate that the processes of compensatory adaptation 

and remodeling regulating the age dynamics of hematocrit force its age trajectories to follow the 

curves which do not tend to minimize the risk of onset of cancer. Persistent deviations from the 

“norm” characterize the effects of allostatic adaptation and the magnitudes of such deviations 

can be associated with components of allostatic load leading to increased chances of onset of 

cancer. Note also that for this to be true, the values of the quadratic (or exponential) part of the 

hazard should be non-zero, which was always the case in our applications. The higher values of 

this parameter for females indicate that in females the trajectory of hematocrit tends to deviate 

further from the “optimal” trajectory minimizing the risk of onset of cancer.  

For both sexes the pattern of the baseline incidence rate decelerates with age (or even 

slightly declines with age for females). This pattern corresponds to the patterns of cancer 

incidence rate at old ages observed in different countries and at different times [32, 36, 42]. Such 

decelerated patterns of cancer incidence rates at old ages may reflect the contribution of basal 

process of aging in the body which is manifested in slowdown of metabolism, proliferative 

response and information processing with age [32, 35]. Note also that the baseline rates for 

females and males intersect around ages 55-60 in both models, with female rates being higher 

before these ages, whereas after these ages female rates become lower than those of males. Such 

universal pattern of male/female cancer incidence rates is observed in different countries and 

time periods, and one possible explanation of such stable behavior involves the difference in 

ontogenetic components of aging between males and females [43].  
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In sum, the analyses using the stochastic process model showed that such aging-related 

processes as decline in adaptive capacity and resistance to stresses, and accumulation of 

allostatic load may contribute to an increase in the risk of onset of cancer with age. The results 

indicated the presence of substantial gender differences in these processes, which may contribute 

to the difference in the shape of the sex-specific patterns of cancer incidence rates. The 

underlying determinants of such differences (which may be of genetic or non-genetic origin) 

require additional studies. 
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Tables: 

Table 1: Estimates of parameters of models 1-4 (see the text) applied to data on incidence of cancer (all sites but skin) and 

longitudinal measurements of hematocrit in female (F) and male (M) participants of the Framingham Heart Study (original cohort) 

Sex Model 

Baseline Hazard  

( )(0 t ) 

Multiplier in Quadratic (or 

Exponential) Part in Hazard ( )(1 t ) 

Adaptive 

Capacity ( )(ta ) 
Other Parameters 

ln L 
Diff. 
AIC 

0
a  

0
b  

2  
11

a  
11

b  
12

a  
12

b  
Ya  Yb  0

 
1  

1f
 

F 1 0.23 0.106 3.04
*
 -0.194

§
 0.205 -0.636 0.159 -0.259 1.920

†
 3.12 1.72 0.18

†
 -65532.64 0.07 

  2 91.94 5.507 2.11 -0.185
§
 0.203 -0.635 0.159 -0.259 1.920

†
 3.12 1.72 0.18

†
 -65532.61 0.00 

  3 0.33 0.100 3.12
*
 0.121

#
 -0.046 -0.081 0.204 -0.259 1.920

†
 3.12 1.72 0.18

†
 -65534.67 4.13 

  4 95.56 5.070 2.07 0.126
#
 -0.054 -0.081 0.202 -0.259 1.920

†
 3.12 1.72 0.18

†
 -65534.63 4.05 

M 1 0.06 0.120 1.73
#
 -2.458

#
 0.614

*
 -1.130

*
 0.330 -0.260 1.957

†
 3.18 1.82 0.08 -51086.85 9.09 

  2 87.59 7.558 1.24 -2.482
#
 0.620

*
 -0.939

*
 0.296 -0.260 1.957

†
 3.18 1.82 0.08 -51087.53 10.44 

  3 0.08 0.115 1.88
§
 -0.133

†
 0.333 0.191

*
 -0.182 -0.260 1.957

†
 3.18 1.82 0.08 -51082.31 0.00 

  4 89.59 7.109 1.33
*
 -0.134

†
 0.336

*
 0.191

*
 -0.182 -0.260 1.957

†
 3.18 1.82 0.08 -51082.89 1.17 

Notes: 

1) ln L – logarithm of the likelihood function; 

2) Diff. AIC – difference between AIC for respective models and the model with minimal AIC (separately for females and males); 

3) The estimates of some parameters are rescaled for better visibility in the table: 
0

a  are multiplied by 10
4
 in Models 1 and 3; Yb are 

multiplied by 10
3
 in all models; 

j
a

1
, j = 1, 2, are multiplied by 10

4
 in Models 1 and 2; 

j
b

1
, j = 1, 2, are multiplied by 10

5
 in 

Models 1 and 2 and by 10
2
 in Models 3 and 4; 

4) The symbols after the numbers in the following columns of Table 1 denote p-values (evaluated by the likelihood ratio test) for 

different null hypotheses tested for respective models:  

Column “ 2 ”: null hypothesis – Gompertz (or Weibull) baseline hazard rates )(0 t , i.e., no decline in baseline hazard at old ages 

(restriction on parameters: 02 );  

Columns “
j

a
1

”:  null hypothesis – zero left (j = 1) or right (j = 2) parts of )(1 t  ( 0
11 jj

ba );  

Columns “
j

b
1

”:  null hypothesis – age-independent left (j = 1) or right (j = 2) parts of )(1 t  ( 0
1 j

b );  

Column “ Yb ”: null hypothesis – no aging-related decline in the adaptive capacity )(ta  ( 0Yb );  
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Column “
1f
”: null hypothesis – “mean allostatic state” )(1 tf coincides with “physiological norm” )(tf  ( 0

1f
).  

The symbols in these columns denote: †: p < 0.0001; §: 0.0001 ≤ p < 0.001; #: 0.001 ≤ p < 0.01; *: 0.01 ≤ p < 0.05, for respective 

null hypotheses. The absence of symbols after the numbers in these columns means that respective p-values exceed 0.05. Note that 

all other columns in the table, except the columns mentioned above, are not used to represent information on testing any null 

hypotheses and therefore they do not contain any symbols. 
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Legends to Figures: 

 

Fig. 1: Average age trajectories (±s.e.) of hematocrit for individuals from the Framingham Heart 

Study (original cohort) who survived until advanced ages ( 90  for females, 85  for males) 

without developing cancer (all sites but skin) and their fit by cubic polynomials. Note: values of 

hematocrit measured after the onset of cancer are excluded from these calculations. 

 

Fig. 2: Estimates of the baseline hazard rate ( )(0 t , panel A), adaptive capacity (|a(t)|, panel B), 

and the multiplier )(1 t  in the quadratic (or exponential) part of the hazard (the “left side,” 

)(11 t , panel C, corresponding to deviations to the lower values from the “optimal” trajectory 

f(t), and the “right side,” )(12 t , panel D, corresponding to deviations to the higher values from 

f(t)) in Models 2 (for females) and 3 (for males) applied to data on onset of cancer (all sites but 

skin) and longitudinal measurements of hematocrit in participants of the Framingham Heart 

Study (original cohort). Note that the multipliers )(1 t  in Models 2 and 3 have different scales. 

The scales for Model 2 (females) are shown on the left side of panels C and D, and the scales for 

Model 3 (males) are shown on the right side of these panels. 

 

Fig. 3: Contour plots of hazard rate ( ),( tYt ), relative risk ( )(/),(),( 0 tYtYtRR tt , where 

)(0 t  is the baseline rate) and the absolute increase in the risk compared to the baseline 

( )(),( 0 tYt t ) as functions of ages (t) and values of hematocrit at these ages (Yt) estimated 

from the stochastic process models applied to data on incidence of cancer (all sites but skin) and 

longitudinal measurements of hematocrit in participants of the Framingham Heart Study 
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(original cohort): (A): hazard rates for females in Model 2 (see the text); (B): hazard rates for 

males in Model 3 (see the text); (C): relative risk for females in Model 2; (D): relative risk for 

males in Model 3; (E): the absolute increase in the risk compared to the baseline for females in 

Model 2; (F): the absolute increase in the risk compared to the baseline for males in Model 3. 

The dotted lines show the “optimal” trajectories )(tf .  
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