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Abstract

In this paper, we develop a new method of inferring child mortality
from the age gaps between surviving children. Based on the idea
that higher child mortality produces an increased frequency of large
gaps between surviving children, we use microsimulation to estimate
the mortality rates implied by the observed distribution of age gaps.
Application to populations with known child mortality shows that
the method can reproduce well the estimates and differentials in child
mortality seen in real populations. Estimates of child mortality from
census-like data could be a valuable new addition to the toolkit of
demographers to apply to the proliferation of historical census data
via the IPUMS, NAPP, and the new Mosaic project, allowing the
study of mortality and fertility (via the own child method) within
populations and across time and space. This method, if successful,
would enable researchers to estimate both mortality and fertility from
a single census cross section, allowing full advantage of the richness of
available census material.

1 Overview

Censuses represent the stocks of population counted at a particular moment
in time. Just as the age-pyramid reflects the history of flows of births and
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deaths for the population, the ages of children within a family reflect the
history of births and deaths within that family. Demographers have long
used the “own-child method” in combination with an external estimate of
mortality to estimate fertility rates. In this research, we develop methods
to estimate child mortality from the observed age intervals between surviv-
ing children internally available within census microdata. This method, if
successful, would enable researchers to estimate both mortality and fertility
from a single census cross section, allowing full advantage of the richness of
available census material. Research on social class differentials in fertility
and mortality, regional differences, and change over time would all become
possible in the many cases where census or census-like data is available.

The development of new methods to take advantage of the rich and grow-
ing availability of census microdata is an important opportunity for demog-
raphers. Building on the strong tradition of indirect methods in demography,
the approach we take here is an example of what can be done by applying
demographic thinking to microdata.

Some of the advantages of using census data for demographic estimation
include:

• First, wide availability of census data makes it possible to compare
across many populations, and over time. There is already consider-
able availability of historical material through the IPUMS and NAPP
projects, and the Mosaic project promises to extend availability to his-
torical Europe. There are even applications to ancient populations,
thanks to the surviving census material from Roman Egypt, Ancient
China, and Ancient Babylonia.

• Second, census material allows the study of differential demography
because information on covariates is available. One can compare dif-
ferent regions, urban and rural areas, and different social classes (by
occupation for example).

• Finally, as with many indirect methods, approaches that use the same
source for events (numerators) and risk (denominators) are more ro-
bust, because data missingness will in effect cancel out when ratios are
calculated. This is not the case when relying on separate birth and
death recording, unless the errors happen to be of exactly the same
size.
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The key idea motivating this paper is that the ages of surviving children
can reveal more than just how many children were born: they can also provide
information on whether any children have died. As an example, consider
the following two families from Alabama listed in the U.S. Census of 1850
(available at IPUMS-USA).

Table 1: Listing from the 1850 US Census

Name Age
James W. Rhea 35
Julia Rhea 27
Amelia Rhea 7
Elizabeth Rhea 5
Jamey Rhea 3
Ephraim Knight 41
Mary James Knight 34
Permelia C. Knight 13
William N. Knight 11
Martha F. Knight 9
John A. Knight 1

In the Rhea family, we see that there are three children, each spaced 2
years apart. In the Knight family, there are four children – the first three are
each two years apart but the fourth has a gap of 8 years. What could have
caused such a long gap? It is possible that it simply could have taken a long
time for John to have been conceived. Or, there could have been another
child (or children) born in the 8 year period that died before they could be
counted in the census.

Looking at just one family it is impossible to say whether a large age gap
between surviving children indicates a child’s death. Conception is a random
process and can well lead to the occasional quite long interval. Furthermore,
when children die very young, it can speed the time to the conception of the
next child by ending lactation. In order to isolate the effect of mortality levels,
our approach is to use microsimulation to take into effect the randomness of
conception and the effect of lactation. Given an assumed fecundity level, life
table, and post-partum insusceptible period, our micro-simulation generates
distributions of surviving birth intervals. Our approach is to generate many
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combinations of these paramters until we find one that best fits the data.
The result is then empirically based estimates of the life table, post-partum
insusceptibility, and fecundity for our observed population.

In this extended abstract, we begin briefly by describing the nature of
historical census data, noting the informative features that we are trying to
incorporate into our estimate. We then decribe our micro-simulation model.
Finally, we describe the estimation procedure and provide an example appli-
cation to the 1850 data.

Before the PAA meetings, our plan is to (1) further refine the micro-
simulation to include changing fecundity by age (2) to do sensitivity testing
using simulation of heterogeneous fecundity across individuals (3) to validate
the methods using a larger sample of populations with known mortality, and
(4) apply the methods to an interesting substantive example, for example,
differential infant mortality by class in the UK.

We have done some preliminary analysis of heterogeneous fecundity and
found that the methods can also work well if appropriately modified. Our
early validation experiments have provided reasonably accurate estimates of
known infant mortality.

2 Data Requirements

The data required for our approach are listings of children’s ages, by single
year, by mother. For example, consider the listing from the 1850 US Census
presented in Table 1. From such data we compute the age intervals between
surviving children. (This can be done for the entire population, or for a
sub-population of interest). We denote the fraction of the intervals of length
i as Pi. The intervals for the United States in 1850 are shown in Table 2.
We note that such distributions can be calculated for even small village-size
sub-samples.

Table 2: Birth intervals of listing from the 1850 US Census given in Table 1

i 0 1 2 3 4 5 6 7 8
Pi 0.015 0.127 0.456 0.210 0.097 0.045 0.027 0.013 0.008
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3 Micro-simulation and indirect estimation

Our micro-simulation of surviving birth intervals is governed by three param-
eters: (i) a baseline fecundity parameter p giving the monthly chance of a
fully fecund woman to conceive (ii) ` that represents the length of the period
of lowered fecundity due to the combined effects of post-partum and lacta-
tional amenorrhea after birth, and (iii) m that gives the mortality regime.

In our model, we consider only pregnancies leading to live births, with
no explicit modelling of miscarriages or abortions. Under this assumption,
at any time, a woman can be in one and only one of the following states:

• S0: fecundable state when she is susceptible to pregnancy

• S1: pregnant state when she is then completely insusceptible to a fur-
ther pregnancy

• S2: postpartum period after a live birth when she has lowered suscep-
tibility to pregnancy.

We model the intervals between births as resulting from the allowable
transition between those three states. Then, the length of the birth intervals
will depend on the duration of the following transitions:

• T1: Getting pregnant while fully susceptible (S0 → S1)

• T2: Giving birth (S1 → S2)

• T3: Becoming fully susceptible (S2 → S0)

• T4: Getting pregnant with lowered susceptibility (S2 → S0)

A diagram of this model is shown in Figure 1
The monthly chance of conceiving a live birth is denoted by p if the

woman is fully susceptible to conceive (S0 → S1), and by pL if she is in a
lowered fecundity period (S2 → S1). In current simulations, pL is set to p/10
and the length of pregnancy (S1 → S2) is fixed to 9 months.

The transition from lowered to full susceptibility (S2 → S0) can occur
either because the period of lowered susceptibility comes to an end, or because
the child that is being nursed dies. In the micro-simulation a random number
L is generated for the length of lactation conditional on the survival of the
child and a random number X is generated for the age of death of the child.
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Figure 1: Possible states and transitions in our model

The transition (S2 → S0) then occurs at time equal to the minimum of these
two random values.

Our current approach is to use a common value of p for all potential birth
intervals. Thus there is no aging of fecundity. There is also no heterogeneity
across individuals. In future work, we will introduce heterogeneity.

Our current mortality modeling approach is based on picking the best
fitting Coale-Demeny life table. We plan to investigate the use of simpler
parametric approaches such as the Weibull or the Siler model of child mor-
tality. An advantage of these parametric approaches is that they are easy to
adapt to a more continuous search over parameter space, as opposed to the
discrete grid search we now use.

One could also add more complexity to the model. For example, miscar-
riages could be included. Twinning could be included. Also, the post-partum
period could be modeled in a more complex way including both post-partum
ammenorea and lactational amenorea as separate factors.

With large data sets it is probably possible to fit many of the parameters
based (for example) post-partum behavior or population heterogeneity based
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on the data. On the other hand, other factors such as miscarriage rates, could
be included by taking standard values from the literature.

3.1 Estimation criteria and an example

In order to estimate which combination of mortality, breastfeeding pattern,
and fecundity best matches our observed population, we first calculate sim-
ulated surviving birth intervals across a wide range of mortality schedules,
lactation lengths, and baseline fecundity values.

For each triple (`,m, p), we obtain a distribution of apparent birth inter-
vals, denoted by Q(i|`,m, p). Once we have generated a ‘scenario grid’ with
all possible discrete values for the triple (`,m, p), we choose the simulated
distribution, Q(i|`,m, p), that most resembles the observed apparent birth
intervals distribution P (i). For that purpose, we use the Kullback-Leibler
divergence from the observed to the simulated distributions:

KL(P,Q|`,m, p) =
∑
i

P (i) log

[
P (i)

Q(i|`,m, p)

]
(1)

The Kullback-Leibler is a (non-symmetric) measure of the difference be-
tween P (·) and Q(·|`,m, p), is always non-negative and it is equal to zero iff
P (·) and Q(·|`,m, p) are identical.

The simulated distribution that most resembles the observed distribution
is the one that minimizes KL(P,Q|`,m, p). Then, the triple (`∗,m∗, p∗) that
minimizes KL(P,Q|`,m, p) is chosen as the best set of estimated values.

As an example, we provide the simulated distributions Q(.) for three
example scenarios and for the best scenario that we found by searching the
grid of parameter values. The first example sets infant mortality to 29/100
and a post-partum period of 1.0 years. The second example sets infant
mortality lower at 23/100, and produces a slightly better fit as measured
by a KL value of 0.09 instead of 0.10. The third example retains the lower
infant mortality but lengthens lactation from 1 to 2 years worsening the
fit considerably. The “best fite”, which was chosen by looking over a broad
range of parameter values including varying p, estimated the infant mortality
to be about 140/1000 and lactation to be about 1.25 years. The fit is quite
good, as can be seen by comparing it to the observed distribution and by the
small KL value.
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Table 3: Simulated distributions of intervals between surviving children for
three example scenarios, the best fit, and observed in the 1850 US Census.
The KL distance measures the similarity with the observed distribution.

Example 1 Example 2 Example 3 Best Fit Observed
Fecundity p 0.20 0.20 0.20 0.14 -
Mortality m 0.29 0.23 0.23 0.15 -
Lactation ` 1.00 1.00 2.00 1.25 -

Q(0) 0.00 0.00 0.00 0.00 0.02
Q(1) 0.23 0.27 0.03 0.13 0.13
Q(2) 0.32 0.33 0.26 0.48 0.46
Q(3) 0.16 0.15 0.33 0.18 0.21
Q(4) 0.11 0.12 0.15 0.10 0.10
Q(5) 0.08 0.06 0.10 0.06 0.05
Q(6) 0.05 0.04 0.08 0.03 0.03
Q(7) 0.04 0.02 0.05 0.02 0.01
KL 0.10 0.09 0.24 0.02 -

4 Extensions

Our research plan includes extensive validation and refinement of the micro-
simulation model and the introduction of variable fecundity across individuals
and over age. The method will be tested on a number of historical population
as well as modern high-infant mortality populations such as those in the
African Demographic and Health Surveys.

A further extension is to provide uncertainty intervals around our esti-
mates. The micro-simulation approach allows us to do this in a straightfor-
ward way by repeated simulation and bootstrapping.

5 Discussion

In this research, we develop an approach to infer the likely pattern of mor-
tality that generated observed intervals between surviving children. Such a
method, if successful, would allow demographers to take advantage of the
proliferation of available micro-data available in historical and modern cen-
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suses through the IPUMS, NAPP, and Mosaic projects. Our hope is that
with such methods could enable a new generation of comparative analysis of
child mortality and fertility, based on census micro-data.

Some drawbacks of the approach are (1) the problem is not analytically
tractable and so requires a computer to perform estimates (2) the microsim-
ulation is limited in applications to populations in which we believe we are
able to model the determinants of birth spacing, so for example the use of
contraception and/or parity-specific spacing behavior is not included in the
model (3) randomness and errors stemming from small population and from
age-misreporting can all introduce errors into the population. One can sim-
ulate the potential effects, but one still has to recognize that such errors will
reduce the precision of the method.

On the other hand, despite its limitations, we believe there is great
promise in this indirect estimation approach to estimating “missing children”
from the age intervals between surviving children.

There are many possible refinements. One approach that might work,
especially when there are many children per household, is to look for varia-
tion on a per-woman basis, instead of combining all women together into a
common interval distribution, as is currently done. Relatedly, our approach
could be used to “impute” missing children to individual women. The ad-
vantage of this approach would be that the individual records could then be
used for standard statistical analysis, which via multiple imputation could
provide appropriate standard errors.

The availability of historical census microdata is rapidly increasing but
the demographic methods used for analysis tend to be the same as those
developed long ago for aggregate data. One approach that may open new
frontiers is to combine computationally intensive statistical estimation with
rich micro-data. The use of micro-simulation of conception, birth, and sur-
vival given here is one such example.
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