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INTRODUCTION 
 
The demographic concept of age-structure has received a great deal of attention lately.  In 

general terms, age-structure describes the distribution of the total population across the 

age spectrum.  Demographers argue that the distribution of the population across cohorts 

has significant consequences for social, political, and economic dynamics (Pampel and 

Peters 1995; Pampel 1993).  In particular, economic performance has been scrutinized as 

a potential outcome of a changing demographic composition (McNiccoll 2006; 

Macunovich 1999; Bloom and Freeman 1988; Brunello 2010).  Aging societies, with 

many people out of the labor force (termed “dependents”) are thought to have lower 

levels of economic growth, while populations that are disproportionately young are 

theorized to have higher growth potential.  Evidence in favor of this hypothesis is mixed 

(Pampel and Peters 1995; Schapiro 1988). 

 

More recently, this concept has been appropriated by the ecological modeling community 

as a lens to understand differential effects of population on global environmental change.  

In particular, the relationship between age structure and CO2 emissions has garnered 

significant attention (Liddle 2000; Zagheni 2011; O'Neill et al. 2010).  These papers posit 

that a high ratio of working-age people relative to the total population is positively 

correlated with CO2 emissions (York, Rosa, and Dietz 2003b; Cole and Neumayer 2004).  

In particular, a high density of younger workers is strongly correlated with increased 

energy use (Liddle 2004), carbon dioxide emissions (Liddle and Lung 2010), and 

environmental change-driven out-migration (Massey, Axinn, and Ghimire 2010).  Others 

have found more inconclusive results (Martínez-Zarzoso and Maruotti 2011). 
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In this research, I investigate the effects of age composition on county-level CO2 

emissions in the US.  This analysis uses the STIRPAT econometric framework as the 

analytical platform for estimating the strength of these demographic variables on carbon 

emissions.  STIRPAT is an estimation technique intended for adapting the well-known 

IPAT identity model of human drivers of environmental change (Commoner 1972; 

Ehrlich and Holdren 1971; York, Rosa, and Dietz 2003c).  Recent investigations by 

environmental sociologists and ecological economists illustrate the empirical stability of 

population and affluence as correlates of CO2 emissions with this stochastic framework 

(Cole and Neumayer 2004; Liddle 2004; Shi 2003).  I aim to improve upon this research 

evaluating five metrics of age-structure as components of this model.  Using an amended 

STIRPAT model, these estimates illustrate that prior county age compositions metrics are 

not significant in estimating CO2 emissions.  The total dependency ratio, previously 

hypothesized to be a negative correlate of CO2 emissions, is not statistically significant in 

US counties.  At the same time, the youth dependency ratio and relative cohort size are 

both positive predictors of county carbon dioxide emissions in the US, indicating that 

older working-age populations and a large youth population are positively correlated with 

carbon.  These estimates contravene prior theories regarding age-structure and 

environmental degradation, suggesting instead that smaller units of analysis demand 

examination of age-specific consumption rates rather than age-specific production. These 

estimates are robust across a variety of specifications that control for spatial effects, fixed 

effects, and heteroskedasticity. 

 

This work is of interest to geographers for several reasons.  Prior STIRPAT analyses 

have largely neglected spatial effects in their modeling efforts. This is true in both an 

econometric and substantive sense.  Though the preponderance of STIRPAT estimations 

utilize cross-sectional and spatial data, few address the specification issue of dependency 

in the dependent variable (Paudel and Schaefer 2009).  The consequences of failing to 

account for this are well noted by geographers (Anselin 1988; Anselin and Griffith 1988).  

Second, the spatial disconnect between production and consumption—known in the 

STIRPAT literature by the political economy term “metabolic rift” (York, Rosa, and 

Dietz 2003b)—fosters a potentially misleading picture of affluence as a driver of carbon 
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emissions.  In short, utilizing affluence in a local-level estimate of IPAT opens up 

potential specification issues from the disparate geographies of production and 

consumption.  Attributing all emissions to local sources of capital is problematic, since 

capital travels so widely.  In this research, I argue that age-structure, serving as a proxy 

for the availability of economically active labor and consumption patterns, offers a more 

appropriate model specification. 

 

BACKGROUND LITERATURE 

STIRPAT modeling is a research endeavor that  attempts to stochastically estimate the 

well-known IPAT model (Dietz and Rosa 1997; Commoner 1972; Ehrlich and Holdren 

1971).  Recognizing that the original identity framework of environmental impact I = 

population P x affluence A x technology T is problematic for empirical analysis, Dietz 

and Rosa (1997) reformulated it into a stochastic model, given in logarithmic form by: 

 

                               (1) 

 

where I is the metric of environmental impact, P is population, A is affluence, most 

commonly GDP per capita, and T is a measure of technology. The intercept is given by a, 

and e is the error term.  Using natural logarithms allows the terms to be estimated as 

elasticities, where coefficients are given by percent changes.  In this way, the model can 

be interpreted as a production function where changes in output are relational to changes 

in inputs. 

 

A great deal of STIRPAT research uses this econometric framework as a starting point, 

adding or dropping variables in order to test various model specifications at different 

scales or using various countries or regions.  Total population and GDP per capita are the 

most common metrics for P and A, while total CO2 emissions and derivative metrics such 

as global warming potential (GWP) and CO2 equivalent, are the most common units of I.  

Many studies simply drop T altogether, preferring to estimate P, A, and A2 without the 

difficulty of pinning T down to a single metric (Dietz and Rosa 1997; Soulé and DeHart 

1998; DeHart and Soulé 2000).  Regardless of the specific approach, T remains difficult 

1 2 3ln (ln ) (ln ) (ln )I a b P b A b T e= + + + +
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to translate into a singular variable and the (more common) method of approaching this 

problem is to estimate ‘technology’ using a wide theoretical lens.  More recent research 

amends this I=PA framework with other social, economic, and demographic variables 

thought to contribute to carbon dioxide emissions (Scholz 2006; Lankao, Tribbia, and 

Nychka 2009; Jorgenson and Rice 2005; Jorgenson and Clark 2010). 

  

The central demographic focus of STIRPAT modeling is age structure.  The most basic 

assumption governing the demography-environment relationship is that the economically 

active population exerts disproportionate force on CO2 emissions.  The preponderance of 

research examining this relationship does so at the national level.  Fan et al. (Fan et al. 

2006) disaggregate a panel dataset of nation-states from 1975-2000, and find that the 

percentage of the working-age population (15-64) varies considerably from a negative 

determinant of CO2 emissions in high-, upper-middle, and low-income countries, to a 

positive driver in China and other lower-middle-income countries.  Cole and Neumayer 

(Cole and Neumayer 2004) illustrate that the population aged 15-64 is significant and 

positive (b = .995) for 86 countries over 24 years (1975-1998) using CO2 as the 

dependent variable.  The variable becomes non-significant when percent urbanized 

population is included, or the dependent variable is SO2. York, Rosa, and Dietz (York, 

Rosa, and Dietz 2003a) specify several cross-sectional specifications for 142 nations in 

1996 and find the non-dependent population to be positive and greater than unity 

(ranging from 1.302 to 1.594) for a variety of specifications and control factors in 

predicting national ecological footprint.  These estimates also illustrate urbanization and 

an arctic or temperate latitude to be a positive determinant. 

 

Several assessments using this metric have failed to confirm any significant role in 

producing CO2 emissions. The common thread in these papers is the inclusion of an 

urbanization variable, suggesting that for national-level STIRPAT assessments 

urbanization and the non-dependent population are collinear effects.  York, Rosa, and 

Dietz (York, Rosa, and Dietz 2003b, 2005) find non-dependent population to be non-

significant in a Kuznets-modified STIRPAT for CO2 and SO2 of 137 countries in 1991.  

It is significant and positive (b = 1.536-1.780) for the combined global warming potential 
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of CO2 and CH4.  Martínez-Zarzoso and Maruotti (Martínez-Zarzoso and Maruotti 2011) 

estimate a panel model for developing countries , for CO2 emissions from 1975-2003,  

and using GDP, population, and urbanization find an inverted U-shaped curve for 

urbanization but no significant contribution from age-structure.   

 

Liddle (Liddle 2004) and Liddle and Lung (Liddle and Lung 2010) assess age-structure 

using more parsimonious terms.  Controlling for GDP, density, and percent urban 

population, Little (2004) finds that the percent of the population aged 20-39 is positive 

and a near unit-elastic predictor of per capita road energy use in OECD countries and US 

households.  Similarly, Liddle and Lung find aggregate CO2 emissions to be higher 

among countries with younger populations in a panel estimate of seventeen developed 

countries in 5-year intervals, 1960-2005.  These studies support hypotheses that posit 

greater production and consumption among younger (under age 35) adults. 

 

Structural modelers make significant use of age-structure variables in creating emissions 

scenarios of future carbon dioxide emissions.  Zagheni (Zagheni 2011), for example, 

finds that changes in US age-structure are likely to contribute to CO2 emissions.  

Zagheni’s input-output model estimates per capita CO2 rises until age 60 among US 

households.  Liddle (Liddle 2000) simulates population, GDP, and age-structure in a 

variety of emission scenarios for consumption.  O’Neill et al. (O'Neill et al. 2010) find 

that aging is likely to reduce CO2 emissions in industrialized countries in the coming 

decades. 

 

A commonality of nearly all age structure STIRPAT studies is the use of national-level 

data.  This is largely an issue of data availability; spatially disaggregated data of impacts 

(CO2, SO2, and other GHG) are difficult to obtain at sub-national units of analysis.  

Liddle (Liddle 2004) notes that reliable demographic data are also similarly temporally 

infrequent.  Though many of these models are estimated at the national level for data or 

specification reasons (such as the inclusion of world-systems or political economy 

variables), the tremendous within-unit variation of demographic processes in large 

countries is potentially consequential in elucidating the relationships between 
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components of society and environmental change.  The spatial disjuncture between 

production and consumption, in particular, maybe of consequence in estimating 

STIRPAT models using age structure, since age-specific rates of production are different 

than age-specific rates of consumption.  Assuming that similar arguments hold at smaller 

scales of analysis is a potential model mis-specification. 

 

ESTIMATION METHODS AND DATA 

 

This research utilizes the STIRPAT framework to estimate the role of county age 

composition on CO2 emissions in the US.  The primary aim is to assess three measures of 

age structure and two metrics of relative cohort size in addition to the traditional 

STIRPAT factors of population and affluence.  Theoretically, these models engage the 

assumptions of the previous literature with respect to age-specific economic dynamics 

and the different geographies of production and consumption.  Prior use in demography 

or ecological research, and a hypothesized relationship with various factors of production 

were two (primary) criteria in deciding to estimate using these metrics.  While other 

STIRPAT analyses have examined, and broadly confirmed the relationship between the 

dependency ratio, age structure, and carbon dioxide emissions, this research is to the best 

of the author’s knowledge the first attempt to model relative cohort size as a determinant 

of GHG. 

 

In order to estimate the effects of age structure on CO2 emissions in US counties, I use an 

econometric model of the following form: 

 

                  (2) 

 

 

Where Ci is the total CO2 emissions in county i; Pi is the total county population, At is the 

median county household income, and St is the metric of age structure.  Finally, a and ei 

are an intercept and an error term, respectively.  The sample used in this research is the 

3107 counties of all US states and Washington, D.C. excluding Alaska and Hawaii; the 

( ) ( ) ( ) ( )2

1 2 3 4ln ln ln ln lni i i i i iC a b P b A b A b S e= + + + + +
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latter are removed due to uncertainty in estimating spatial models with non-continuous 

data.  Data are for 2002 and represent all counties for which data are consistent and 

available during the study year.  Descriptions for each variable and the hypothesized sign 

are in Table 1. 

 

Equation (2) is recognizable as a Kuznets-modified STIRPAT model, with population, 

affluence, and a squared affluence term estimated as drivers of CO2 emissions.  The 

model I specify here is a cross-sectional model. Shi (Shi 2003) and Cole and Neumayer 

(Cole and Neumayer 2004) favor using panel data over cross-sectional data, as both 

temporal and spatial effects can be modeled. This is particularly important in light of 

specific structural and development effects between countries that cannot be modeled 

consistently with static, single-year data.  Trade, for example, is a well-known factor in 

biasing national-level carbon emissions profiles, since many countries import a 

significant quantity of goods manufactured in other places; several scholars have 

attempted to model these effects in STIRPAT models (Jorgenson and Rice 2005; Ehrlich 

and Holdren 1971; Stretesky and Lynch 2009; Bin and Harriss 2006).  While I prefer to 

model the problems using panel econometric procedures in order to avoid problems from 

unobserved heterogeneity, data for county-level CO2 emissions are only available for the 

year 2002.  County CO2 data are from the Vulcan Project (Gurney et al. 2009) and are 

given by the natural log of total county CO2 emissions, in tonnes. 

 

Econometric estimates of the environmental Kuznets model and STIRPAT modeling 

efforts have many commonalities in their functional form.  One prior criticism of Kuznets 

models is the tendency to model population on the left-hand side of the equation, rather 

than as a variable to be tested (Cole and Neumayer 2004).  Though prior research broadly 

confirms a unit-elastic relationship between population and carbon emissions (York, 

Rosa, and Dietz 2003c; Rosa, York, and Dietz 2004; Scholz 2006), the strength of this 

relationship at small analytical units is largely unconfirmed.  In this research, I use the 

natural log of the total county population, the natural log of median household income, 

and a quadratic income term to test the basic, first-order demographic and economic 

drivers of CO2 emissions.  Using logged data allows the population term to be interpreted 
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as an elasticity, where coefficients represent percent change.  A coefficient near unity 

indicates a proportional (unit-to-unit) change between population and carbon emissions.  

The expected sign of population is positive and near unity. 

 

I estimate median household income using a linear and quadratic term.  Including a 

quadratic term tests for the statistical presence of an inverted U-shaped relationship 

between affluence and environmental impact. This curvilinear relationship is the basis for 

the environmental Kuznets hypothesis.  In this model, the affluence terms are centered 

before squaring in order to mitigate problems arising from collinearity between the two 

terms.  Per the STIRPAT framework, the expected sign of household income is positive 

for the linear term; a significant and negative quadratic term (in concert with a positive 

linear term) indicates the presence of an EKC.   

 

Environmental Kuznets modeling has sustained a substantial amount of criticism, both 

from a methodological (Perman and Stern 2003; Auci and Becchetti 2006; Müller-

Füstenberger and Wagner 2007; Romero-Ávila 2006), and a theoretical standpoint (Stern 

2004).  Furthermore, this empirical technique is generally used to understand economic-

environment relationships borne out of long-run development trajectories and structural 

change.  Finding statistical evidence in a local-level, cross-sectional dataset does not 

necessarily constitute substantive evidence in favor of a curve; a number of other 

unobserved effects may be at work in driving this model estimate.  I include these terms 

in this model, however, because it has become standard practice to do so in STIRPAT.  

Income data estimates are obtained from the Census’ Small Areas Income and Poverty 

Estimates program (Census 2002).   

 

The major contribution of this research is the estimation of age structure effects on 

carbon emissions in US counties.  In this research, I test five measures of age structure 

and composition on CO2 emissions.  Previous work focuses on the ‘economically active’ 

or non-dependent population—those aged 15 to 64.  In these estimates, I model the 

prevalence of the economically active population as a ratio of population under age 15 

(the ‘youth’ cohort) and the population aged 65 and over (the ‘elderly’ population) to the 
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population aged 15 to 64 (defined as the ‘working age’ or non-dependent population).  

This is the total dependency ratio (TDR).  Demographic explanations of the population-

degradation relationship argue that the greater the proportion of the non-dependent 

population, the greater the productivity per capita and therefore GHG emissions.  There 

are several reasons why we should expect this, but the principal factor driving this 

relationship is that dependent populations require capital that would otherwise be 

invested elsewhere.  A negative coefficient for the total dependency ratio (TDR) confirms 

a hypothesis of declining carbon dioxide emission with increasing numbers of 

dependents.   

 

In this investigation I disaggregate the relationship further by estimating the elderly and 

youth cohort ratios separately.  These are termed the elderly dependency ratio (EDR) and 

youth dependency ratio (YDR), respectively.  Parsing these two dependent cohorts into 

different variables allows for differing consumption patterns between the two age groups 

to be estimated.  Although theories of age-structure argue that the size of the 

economically active labor force is the primary driving factor behind emissions, the 

relationship they bear to their dependents differs considerably depending on the age of 

the dependent.  Places with a high elderly dependency ratio, for example, have many 

costs associated with caring for the aged and ensuring security during retirement. These 

costs are theorized to negatively impact the investment rate, and therefore put downward 

pressure on economic production.  As in the TDR the expected sign of the EDR is 

negative. 

 

The expected sign of the youth dependency ratio is potentially more complex.  In theory, 

the same arguments regarding investment and production apply; greater numbers of 

dependents for each worker diverts greater resources from reinvestment and production. 

Additionally, higher fertility can have potentially negative consequences on productivity, 

as labor required to rear children displaces labor time in the workplace. Although prior 

work has treated this as another form of the dependency ratio, where the expected sign in 

places with high fertility is negative, I argue that the relationship is more complex; in 

many places additional children necessitate more labor and more work in order to 
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financially support larger households.  While this reasoning is not the inverse of the 

traditional DR hypothesis discussed above, it does complicate the argument and expected 

between the YDR and CO2.  The expected sign of the YDR is either positive or negative. 

 

In contrast to the dependency ratio measures, I use relative cohort size (RCS) as an 

alternative metric of age structure and as a way to estimate the effects that different 

demographic “mixes” bring to the economy and environment.  The intention of this 

metric in demographic research is to understand how non-constant variance in the size of 

age cohorts impacts various societal phenomena. Since different age groups produce and 

consume things at different rates during the lifecycle, the distribution of the population 

throughout these age cohorts is potentially of consequence. For the RCS measures 

oriented towards “economic” relationships, the working-age population is balanced 

between an older and younger cohort (thought to have qualitatively different relationships 

with production).  Pampel and Peters (Pampel and Peters 1995) takes this ratio as  

(30Age64 / 15Age29), while Brunello (Brunello 2010) uses a more balanced metric, given 

by: (35Age50 / 20Age34).   

 

In this research, I employ both the Pampel and Brunello RCS.  A positive coefficient 

indicates a county labor force weighted towards older populations is producing higher 

levels of CO2 emissions, while a negative coefficient indicates that labor forces weighted 

towards younger populations are associated with higher carbon emissions.  The former 

represents a hypothesis of a mature workforce, where older, more experienced workers 

are more capitalized, and presumed to have greater levels of productivity.  In the case of 

the latter, younger populations are assumed to have greater productivity borne out of a 

disadvantageous position in the labor market and the subsequent need to minimize this 

risk factor.  Thus greater productivity is a byproduct of flexibility in location, time 

devoted to labor outside the home, and (marginally) fewer family constraints. 

 

Out of concern for potential bias resulting from heteroskedasticity and spatial 

dependency in the error term, I use a three-fold modeling procedure to estimate Equation 

2.  First, I use a robust ordinary least squares procedure with White’s heteroskedasticity-
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consistent standard errors (White 1978).  Heteroskedasticity in the error term violates 

assumptions of the OLS regression model, and failing to correct for this may result in 

biased standard error estimates.  White’s covariance adjustment procedure has been 

shown to produce standard error estimates consistent under heteroskedasticity.  Second, I 

estimate each model using spatial-econometric procedures.  Failing to account for 

dependency in the dependent variable or error term can lead to biased estimates of 

coefficients or standard errors, respectively (Anselin 1988, 1995).  Finally, I employ a 

state-level fixed-effects model in order to control for unobserved state-to-state 

differences.  Although well-known state-to-state differences in the independent variables 

creates the risk for over-determination in a cross-sectional model, this procedure is a 

common method of controlling for unobserved differences at a common regulatory scale.  

I estimate the fixed-effects models using both a spatial-error procedure and a generalized 

least squares procedure in order to test whether the model is robust controlling for both 

spatial dependency and heteroskedasticity. 

 

RESULTS AND DISCUSSION 

  

Estimates for the dependency ratio models are presented in Tables 2 through 4.  Broadly, 

each of these regressions performed similarly, explaining between sixty-nine and 

seventy-two percent of the variance.  F-tests for ordinary least squares estimates are 

significant, and variance inflation factors (VIFs) and the multicollinearity index for each 

OLS and spatial error model show that collinearity is within generally accepted 

limits.  Collinearity in the fixed-effects specifications is high; this is a common 

consequence of including spatial fixed effects terms, as the vector of terms for states 

serves as a surrogate metric for geographic differences in population and income.  Spatial 

dependency in the error terms is significant in each of the models, and each of the fixed-

effects models illustrate a high degree of heteroskedasticity.   

  

Total county population and median household income are positive and significant 

determinants of CO2 emissions.  Population exhibits a near unit-elastic relationship with 

the dependent variable, with coefficients ranging from 0.847 to 0.897.  These values are 
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consistent with other STIRPAT estimates, which have confirmed a hypothesized unitary 

relationship with CO2 emissions.  At the same time, income and the quadratic of income 

are significant and consistent with the curvilinear relationship of Kuznets.  For all 

dependency ratio specifications and procedures, the linear term is positive and significant 

and the quadratic term is negative and significant.  Middle income counties in the US, 

then, are associated with the highest total CO2 emissions. 

  

The three dependency ratio measures illustrate a more complex relationship with 

CO2 emissions (Table 2).  Prior work has illustrated that the size of the working age 

population—assessed in numerically different ways—has a positive impact on carbon 

dioxide emissions (York, Rosa, and Dietz 2005; Liddle and Lung 2010; Cole and 

Neumayer 2004).  These estimates paint a different picture.  The total dependency ratio in 

2002—estimated here as the ratio of those aged 0-15 and 65+ to the ratio of those aged 

15-64—is a positive determinant of CO2.  Counties with higher proportions of non-

working age people are correlated with higher carbon dioxide emissions, and a 10% 

change in the TDR is correlated with ~2-3% change in carbon emissions.   

 

The estimates for the elderly dependency ratio (EDR) and youth dependency ratio (YDR) 

explore this relationship further (Table 3 and 4).  Theories regarding age structure and 

environmental impact specify declining consumption with age, with working-age 

populations driving consumption and, therefore, CO2 emissions. Using only the TDR to 

estimate this relationship is problematic, as populations under the age of 15 drive 

consumption indirectly.  Disaggregating the TDR into two measures of EDR and YDR is 

an alternative for estimating whether different cohorts outside of the working-age 

population have differential effects on carbon dioxide emissions.  According to 

demographic theories regarding age structure and environmental impact, the size of the 

elderly population should be negatively correlated with CO2 emissions, while the size of 

the youth population is either positive or negative. 

  

Regression procedures that substitute EDR and YDR are shown in Tables 3 and 4.  None 

of the four specifications for the elderly dependency ratio are significant, while the YDR 
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is significant and positive for each procedure.  Coefficients range from b = 0.346-0.362 in 

the fixed-effects models to b = 0.504 in the robust OLS procedure. A ten percent change 

increase in the ratio of youth to economically active adults results in a ~3-5% increase in 

CO2 emissions.  The population and income terms are significant across all procedures 

and are not substantially different than those in Table 2. 

  

There are several possible interpretations for these theoretically inconsistent estimates, 

but none suggest or support an aging hypothesis of decreased environmental impact.  Put 

colloquially, these models find no correlation between the balance of the dependent 

population and the non-dependent population with carbon dioxide emissions.  At the 

same time, the positive values for the youth dependency ratios can be viewed from a 

consumption perspective, where counties with greater fertility have greater total carbon 

emissions.  Households with greater numbers of children require more resources than 

those with few or no children, resulting in higher levels of impact.  While these results do 

not accord to prior age-structure work using CO2 as an outcome variable (O'Neill et al. 

2010; O'Neill, MacKellar, and Lutz 2001), local-level demographic processes and the 

consequent emissions levels do not necessarily share the same relationship as posited by 

macro-level studies of emissions and environmental impact.  Macro-level relationships 

between age-structure, productivity, investment, and environmental impact do not 

account for the spatial circulation of capital that is particularly consequential at smaller 

scales of analysis.  These regression estimates illustrate that a lacuna exists between the 

age-specific productivity and age-specific consumption, the latter of which would be 

‘spread’ more thinly (or evenly) throughout the population.  This difference in production 

and consumption patterns is thus apparent at smaller spatial units when carbon dioxide is 

the metric of environmental impact. 

 

As a way of further understanding the role of demographic change and total 

CO2 emissions, I substitute dependency ratio metrics with two ratio measures of relative 

cohort size.  These measures are coded RCSP for Pampel’s metric (given by: 

30Age64/15Age29) and RCSB for the ratio used by Brunello (given by: 35Age50/20Age34).   

Pampel and Brunello specify these ratios differently, but both are intended to capture the 
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balance of two qualitatively different components in the labor force.  I have included both 

metrics as a measure of redundancy and test of consistency.  

 

Tables 5 and 6 show the results for the RCS regressions.  RCS-Pampel is significant and 

positive in all procedures excepting the robust least squares.  The coefficients range from 

0.150 to 0.213, which can be interpreted as a ~1.5-2.0% increase in CO2 emissions for 

every 10% increase in the ratio of older workers to younger. Similarly, RCS-Brunello is 

significant and positive, ranging from 0.240 to 0.334.  For both measures of RCS, 

counties with larger older cohorts have higher CO2 emissions.  Population retained unit-

elasticity, and income terms remain significant according to the Kuznets hypothesis.   

 

Though each of the relative cohort size estimates illustrated positive coefficients and a 

significant relationship between the size of the older labor force and CO2 emissions, the 

coefficients for the Brunello estimates are much larger.  The numerically sharper lens of 

the Brunello RCS—when compared with Pampel’s numerator—suggests that the age 

cohorts with the greatest capacity for emissions are in the early-middle ages.  These age 

cohorts also represent the portion of the population with the greatest capacity to consume, 

as well as those with the greatest number of dependents.   

 

 

SUMMARY 

 

A synthesis of these model estimates portends a complex demographic-environmental 

scenario that warrants further analysis. In general, places in 2002 that had greater 

numbers of people over the age of 30 to 35 had higher carbon emissions during that year.  

Additionally, counties that had proportionately large under 15 populations also had 

higher CO2 emissions, even when controlling for population, income, and other spatial 

effects.  That these are associated in the same way with respect to CO2 may reflect that 

with increasing age the probability of having children increases, and that children and 

middle-age adults have greater levels of consumption than people in early adulthood and 

in the beginning stages of entering the workforce.  Prior demographic work contravenes 
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this interpretation, where younger, childless adults have higher levels of productivity, but 

the interpretation I am advancing here is more germane to a consumption-side argument, 

rather than the production-side arguments of prior dependency ratio models.  These 

estimates, then, are not analogous to O’Neill et al.’s theories regarding investment and 

savings levels as correlates of age and productivity (O'Neill, MacKellar, and Lutz 2001).  

Rather, the age-structure correlations are stronger among the cohorts that have a greater 

propensity to consume, not produce.  While this research does not take issue with the 

theoretical arguments used by scholars estimating macro-level models, it does suggest 

that estimating human-environment relationships at the local level requires a different 

conception of demographic-economic relationships and the way they relate to 

environmental change. 
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Table 1) Definition of variables used and expected sign   

Variable Description Expected sign 

Population 

Natural log of the total county 

population, 2002 + 

Median Household Income 

Natural log of the median 

household income, 2002, 

centered on the mean + 

Quadratic of Median 

Household Income 

Squared natural log of the 

median household income, 

2002, centered before squaring - 

Total Dependency Ratio 

Natural log of the dependency 

ratio, given by: (Pop 0-15 + Pop 

65+ / Pop 16-64) - 

Elderly Dependency Ratio 

Natural log of the dependency 

ratio, given by: (Pop 65+ / Pop 

16-64) - 

Youth Dependency Ratio 

Natural log of the dependency 

ratio, given by: (Pop 0-15 / Pop 

16-64) +/- 

Relative Cohort Size (Pampel) 

Natural log given by: (Pop 30-64 

/ Pop15-29) + 

Relative Cohort Size 

(Brunello) 

Natural log given by: (Pop 35-50 

/ Pop 20-34) + 
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2) Total Dependency Ratio Regressions           

 Pooled Fixed effects 

 1 2 3 4 

  OLS Spatial Error Spatial Error GLS 

Population 0.861 *** 0.875 *** 0.874 *** 0.868 *** 

t-score 62.592  61.412  58.125  58.704  

Income 0.528 *** 0.563 *** 0.659 *** 0.656 *** 

 6.580  6.430  7.096  7.354  

Income² -1.085 *** -1.020 *** -1.153 *** -1.214 *** 

 -7.150  -5.728  -6.617  -7.210  

TDR 0.171  0.246 * 0.167  0.114  

 1.660  2.174  1.430  0.979  

Intercept 3.209 *** 3.101 *** 4.097 *** 4.147 *** 

 25.398  21.297  17.118  18.625  

Lambda   0.299 *** 0.164 ***   

   11.586  5.871    

                  

R-squared 0.690  0.708  0.720    

F 1732.000        

 (0.000)        

Log 

likelihood   

-

3830.530  

-

3745.930  

-

3826.128  

AIC 7799.639  7671.060  7597.860  7760.257  

B-P 25.023  66.113  453.232    

 (0.000)  (0.000)  (0.000)    

Cond. Index   21.755  38.098    

VIF Avg.  1.313        

VIF Max. 1.477        

                  

n=3107. All data are natural logs.  Income terms are centered (before squaring, in 

the case of the quadratic term to avoid multicollinearity problems.  White's robust 

standard errors are used in the OLS estimates. 
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3) Elderly Dependency Ratio Regressions           

 Pooled Fixed effects 

 1 2 3 4 

  OLS Spatial Error Spatial Error GLS 

Population 0.848 *** 0.866 *** 0.869 *** 0.862 *** 

t-score 60.514  59.363  55.881  56.348  

Income 0.493 *** 0.532 *** 0.632 *** 0.622 *** 

 6.141  6.068  6.734  6.888  

Income² -1.183 *** -1.051 *** -1.160 *** -1.244 *** 

 -7.424  -5.742  -6.503  -7.197  

EDR -0.093  -0.011  -0.001  -0.040  

 -1.598  -0.180  -0.014  -0.654  

Intercept 3.111 *** 3.031 *** 4.028 *** 4.067 *** 

 24.791  20.570  16.853  18.275  

Lambda   0.296 *** 0.161 ***   

   11.435  5.747    

                  

R-squared 0.690  0.707  0.720    

F 1732.000        

 (0.000)        

Log 

likelihood   

-

3832.871  

-

3746.946  

-

3827.030  

AIC 7799.405  7675.740  7599.890  7762.06  

B-P 41.767  124.784  490.004    

 (0.000)  (0.000)  (0.000)    

Cond. Index   21.812  38.078    

VIF Avg.  1.394        

VIF Max. 1.522        

                  

n=3107. All data are natural logs.  Income terms are centered (before squaring, in 

the case of the quadratic term to avoid multicollinearity problems.  White's robust 

standard errors are used in the OLS estimates. 
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4) Youth Dependency Ratio Regressions           

 Pooled Fixed effects 

 1 2 3 4 

  OLS Spatial Error Spatial Error GLS 

Population 0.855 *** 0.865 *** 0.865 *** 0.861 *** 

t-score 69.332  63.404  58.704  59.264  

Income 0.528 *** 0.549 *** 0.639 *** 0.644 *** 

 6.503  6.380  7.047  7.405  

Income² -1.225 *** -1.147 *** -1.248 *** -1.311 *** 

 -8.300  -6.424  -7.098  -7.699  

YDR 0.507 *** 0.442 *** 0.346 *** 0.362 *** 

 5.067  4.169  3.143  0.109  

Intercept 3.768 *** 3.579 *** 4.498 *** 4.591 *** 

 22.258  18.709  16.265  17.490  

Lambda   0.288 *** 0.157    

   11.053  5.619    

                  

R-squared 0.693  0.709  0.721    

F 1751.000        

 (0.000)        

Log 

likelihood   

-

3824.285  

-

3742.023  

-

3821.153  

AIC 7776.196  7658.570  7590.050  7750.306  

B-P 23.815  71.101  471.092    

 (0.000)  (0.000)  (0.000)    

Cond. Index   25.563  43.028    

VIF Avg.  1.242        

VIF Max. 1.415        

                  

n=3107. All data are natural logs.  Income terms are centered (before squaring, in 

the case of the quadratic term to avoid multicollinearity problems.  White's robust 

standard errors are used in the OLS estimates. 
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5) Rel Cohort Size (Pampel) Regressions           

 Pooled Fixed effects 

 1 2 3 4 

  OLS Spatial Error Spatial Error GLS 

Population 0.857 *** 0.881 *** 0.892 *** 0.884 *** 

t-score 63.772  57.901  54.009  54.656  

Income 0.503 *** 0.475 *** 0.545 *** 0.568 *** 

 5.855  5.195  5.706  6.228  

Income² -1.110 *** -1.056 *** -1.179 *** -1.237 *** 

 -7.367  -5.926  -6.766  -7.351  

RCSP 0.027  0.150 * 0.213 * 0.179 * 

 0.434  2.158  3.023  2.531  

Intercept 3.124 *** 2.758 *** 3.626 *** 3.771 *** 

 18.272  14.404  13.462  14.928  

Lambda   0.305 *** 0.168 ***   

   11.828  6.016    

                  

R-squared 0.690  0.708  0.721    

F 1730.000        

 (0.000)        

Log 

likelihood   

-

3830.606  

-

3742.410  

-

3823.907  

AIC 7802.048  7671.210  7590.820  7755.813  

B-P 17.527  52.293  460.253    

 (0.002)  (0.000)  (0.000)    

Cond. Index   26.391  42.128    

VIF Avg.  1.360        

VIF Max. 1.593        

                  

n=3107. All data are natural logs.  Income terms are centered (before squaring, in 

the case of the quadratic term to avoid multicollinearity problems.  White's robust 

standard errors are used in the OLS estimates. 
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6) Rel Cohort Size (Brunello) Regressions           

 Pooled Fixed effects 

 1 2 3 4 

  OLS Spatial Error Spatial Error GLS 

Population 0.883 *** 0.905 *** 0.912 *** 0.904 *** 

t-score 61.251  55.070  52.415  52.982  

Income 0.407 *** 0.394 *** 0.494 *** 0.514 *** 

 4.681  4.239  5.153  5.612  

Income² -1.121 *** -1.068 *** -1.203 *** -1.260 *** 

 -7.474  -6.006  -6.913  -7.497  

RCSB 0.240 *** 0.307 *** 0.334 *** 0.315 *** 

 3.743  4.208  4.504  4.241  

Intercept 2.822 *** 2.572 *** 3.529 *** 3.638 *** 

 17.572  14.303  13.638  15.022  

Lambda   0.304 *** 0.166 ***   

   11.785  5.944    

                  

R-squared 0.691  0.709  0.722    

F 1739.000        

 (0.000)        

Log 

likelihood   

-

3824.092  

-

3736.851  

-

3818.080  

AIC 7790.654  7658.180  7579.700  7744.178  

B-P 17.785  61.069  446.597    

 (0.001)  (0.000)  (0.000)    

Cond. Index   25.276  39.414    

VIF Avg.  1.537        

VIF Max. 1.951        

                  

n=3107. All data are natural logs.  Income terms are centered (before squaring, in 

the case of the quadratic term to avoid multicollinearity problems.  White's robust 

standard errors are used in the OLS estimates. 

 


