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Abstract

This paper establishes a formal relationship between period and cohort
measures, responds to the literature casting doubts on the usefulness of period
measures as cohort estimators, and proposes three tempo-adjusted predictors
of cohort quantum which are easy to implement. Empirical evidence from
Canada, the U.S., and 23 European countries suggests that our predictors
provide satisfactory estimates and outperform some conventional methods in
most cases, particularly when the observed cohort experience is truncated at
a very young age.

1 Introduction

Period total fertility rates (PTFRs hereafter), adjusted or unadjusted, have long

been considered unreliable in estimating the mean family size of associated cohorts.

The fluctuant feature in the time series of adjusted period indicators and their ob-

vious discrepancies from the time series of cohort fertility have been presented in

many studies, usually illustrated graphically (e.g. Kohler and Ortega, 2002; Ry-

der, 1990; Schoen, 2004; Smallwood, 2002; Sobotka, 2003; van Imhoff and Keilman,

2000). These previous comparisons of period and cohort measures were, however,

based on a one-to-one correspondence.1 Although van Imhoff and Keilman (2000,

p.552) indicated that most of fluctuations caused by adjusted PTFRs persist even

1Mostly, period measures and cohort measures are related through the mean age at birth of

period or cohort.
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after moderate smoothing, Cheng and Lin (2010) showed that strong smoothing can

remove fluctuations and then provide a good estimate of the cohort total fertility

rate (CTFR hereafter), implying that the correspondence between period and cohort

measures can in fact be many-to-one, since smoothing a series of values is identical

to taking a weighted average of them.

Distinguished from the demographic translation literature (Keilman, 1994, 2000;

Ryder, 1964), this paper derives a simple but definite relationship between period

and cohort measures as follows. Let f(a, t) be an age- and time-specific fertility rate,

with a and t representing age and time, respectively. For convenience of exposition,

a is assumed to fall within the range [0, β], where β is a large finite number such

that f(a, t) = 0 for all a ≥ β and all t. Summing the rates over childbearing ages

for cohort c yields the cohort quantum:

CTFR(c) =

∫ β

0

f(a, c+ a) da.

Similarly, we define the period quantum for calendar year t as

PTFR(t) =

∫ β

0

f(a, t) da,

and further the period age-specific fertility proportion as p(a, t) = f(a, t)/PTFR(t),

where

∫ β

0

p(a, t) da = 1, (1)

for any t. Replacing f(a, c+ a) with PTFR(c+ a) p(a, c+ a) leads to

CTFR(c) =

∫ β

0

PTFR(c+ a) p(a, c+ a) da, (2)

showing that a CTFR can be expressed as a linear combination of PTFRs with

p(a, c + a) as the nonnegative coefficient for PTFR at time c + a. Alternatively, a
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CTFR can be expressed as a linear combination of Bongaarts-Feeney adjusted total

fertility rates (BFs hereafter), i.e.

CTFR(c) =

∫ β

0

BF(c+ a)w(a, c+ a) da, (3)

where BF(t) = PTFR(t)/
[
1 − r(t)

]
, r(t) represents the change in the mean age

of childbearing at time t = c + a, and the corresponding coefficient is w(a, t) =

[
1− r(t)

]
p(a, t).2 In other words,

Proposition 1.

The CTFR of cohort born at time c is a linear combination of the BFs from

time c through time c+ β.

Note that this proposition holds without premise. In the same way, the CTFR can

also be linked to period measures as proposed in Kohler and Philipov (2001) or in

Goldstein and Cassidy (2010).

Also note that Equations (2) and (3) always hold regardless of birth order.3 A

few critiques (e.g. Keilman, 2000; van Imhoff, 2001; van Imhoff and Keilman, 2000)

on the BF (or other period measures constructed using age-specific fertility rates)

emphasized that the use of incidence rates for non-repeatable events is erroneous.

Specifically, since the shift in tempo affects both the numerator and the denominator

of such rates, any index derived using the sum of rates for a given year can intro-

duce extra tempo distortions and thus cannot be interpreted as a proper quantum

2Bongaarts and Feeney (1998, p.282–284) had proposed to compare the completed fertility of

true cohorts with an average of their adjusted total fertility rates over the years during which the

true cohorts were in their choldbearing years. However, they did not provide a formal inference or

mathematical proof on this comparison, and the weights they provided (see their footnote 7) also

differ from w.
3When f(a, t) denotes fertility rate combining all parities, the BF(t) in Equation (3) differs

from the formula derived in Bongaarts and Feeney (1998, Equation 4).
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indicator. They are right in the sense of such period measures being utilized in the

aforementioned one-to-one manner. But if one concludes further that any variant

of the period-sum method must cause the same problem and is thus meaningless,

one has unfortunately reached the wrong conclusion by ignoring the relationships

between CTFR and period measures provided in Equations (2) and (3). An analogy

may be useful. If a professor at Rutgers University (New Brunswick, NJ) wants

to attend a conference held in Washington D.C., she/he can drive or take a train,

heading south, to the conference venue. Or, she/he can go north first to Newark

Liberty International Airport (EWR) and then take a plane to get to D.C. The

erroneous conclusion is like saying that if one wants to visit a city located to the

south of one’s own, she/he must not start going northward.

“When data are available on completed childbearing, measuring cohort fertility

is straightforward” (Ńı Bhrolcháin, 2011, p.850) and Equation (3) adds no value.

However, when cohort childbearing is unfinished Equation (3) becomes a useful

starting point to develop approaches in predicting the CTFR. In Section 2, we pro-

pose three new tempo-adjusted methods which incorporate the cumulated fertility

of incomplete cohorts, overcoming the deficiency that the BF indicator “dispenses

with the entire past of the fertility process but for each pair of adjacent periods” (Ńı

Bhrolcháin, 2011, p.853). Along with two convetional methods, the performance of

approaches are evaluated with historical data from Canada, the U.S., and 23 Eu-

ropean countries. Section 3 introduces the data, the experiment design, and the

estimation details. Empirical results presented in Section 4 suggest that our pre-

dictors outperform conventional ones in most cases, particularly when the cohort

experience is truncated at very young ages. Section 5 concludes.
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2 Methods in Predicting CTFR

When data of cohort childbearing is truncated at age A, the CTFR can be divided

into two parts — observed and unfinished — and written

CTFR(c) =

∫ A

0

f(a, c+ a) da+

∫ β

A

f(a, c+ a) da.

The strategy to complete the CTFR, i.e. to estimate f(a, c + a) for a ∈ (A, β ]

in the unfinished part, is mostly based on particular assumptions regarding future

movements in these rates.

2.1 Conventional Methods

For example, one can assume that recent experience would continue into the future

and use the age-specific fertility rates in the latest year observed, T = c+A, (or the

average fertility rates in the latest few years) as an imputation of the future rates

for each age, so that the estimated CTFR becomes

est. CTFR(c) =

∫ A

0

f(a, c+ a) da+

∫ β

A

f(a, T ) da. (4)

This method is hereafter denoted by the Freeze-Rate, since the future rates are

“frozen” as those in the latest year observed.

Alternatively, one can utilize fertility rates in the latest few years observed to

derive linear extrapolations age by age, so that the estimated CTFR can be

est. CTFR(c) =

∫ A

0

f(a, c+ a) da+

∫ β

A

[
f(a, T ) + Δa · (a−A)

]
da. (5)

where Δa =
[
f(a, T )− f(a, T − k)

]
/k for some chosen k. We denote this procedure

hereafter by the Linear-Extrapolation.
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Other conventional approaches, such as curve fitting models,4 the Evans method

(Evans, 1986), the Li-Wu model (Li and Wu, 2003), and the Willekens-Baydar ap-

proach (Willekens and Baydar, 1984), all work in a similar manner. They make

their own particular assumptions regarding the structure behind the data, estimate

related parameters with information from either the observed part of the target

cohort or the experience of previous cohorts, and then produce their predictions.

Note that we do not intend to include conventional approaches other than the

Freeze-Rate and Linear-Extrapolation methods selected for this paper owing to the

following considerations: (1) The Freeze-Rate and Linear-Extrapolation methods

are easy to implement and the results shown in this paper can be replicated and

verified without difficulty, suggesting that such methods can be regarded as a com-

mon reference for researchers to evaluate performances across various approaches.

(2) The Freeze-Rate method actually outperforms several conventional approaches

in predicting the CTFR; see evidence in Cheng and Lin (2010, Table 1).5

2.2 Tempo-Ajusted Approaches

Based on the identity that f(a, c + a) = BF(c + a)w(a, c + a) as in Equation (3),

one can take the BF value in the latest year observed, T = c+A, as an imputation

of the future BF values and obtain

est. CTFR(c) =

∫ A

0

f(a, c+ a) da+ BF(T )

∫ β

A

w(a, c+ a) da.

This BF-freezing equation, however, is not an estimator of the CTFR until one

specifies how to impute the integration of future coefficients w(a, c + a) for a ∈
4For example, a modified version of the Coale-McNeil’s (1972) double exponential model (e.g.,

Bloom 1982; Chen and Morgan 1991), the Hadwiger function (e.g., Chandola, Coleman, and Hiorns

1999), and the linearized Gompertz model (Myrskylä and Goldstein 2010).
5They used a different term, the Naive, to name the Freeze-Rate method.
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(A, β ].6 According to:

Proposition 2.

Assume that the period pattern p(a, t) is constant for time t ∈ [ c, c+β ].7 Then

∫ β

0

w(a, c+ a) da =

∫ A

0

w(a, c+ a) da+

∫ β

A

w(a, c+ a) da = 1

holds for cohort c.

and

Proposition 3.

Assume that the period pattern p(a, t) is constant for time t ∈ (T, c+β ], where

T = c + A. Then

∫ β

A

w(a, c+ a) da =

∫ β

A

p(a, T ) da,

holds for cohort c.

We propose the following two esitmators:

est. CTFR(c) =

∫ A

0

f(a, c+ a) da+ BF(T )
[
1−

∫ A

0

w(a, c+ a) da
]

(6)

and

est. CTFR(c) =

∫ A

0

f(a, c+ a) da+ BF(T )

∫ β

A

p(a, T ) da, (7)

respectively. These two innovative methods are denoted hereafter by the Freeze-

BF1 and the Freeze-BF2 since the future BF values are “frozen” as in the latest

year observed, T . The proofs of Propositions 2 and 3 are provided in Appendix.

6Note that a seemingly straightforward imputation of w(a, a + c) using w(a, T ) for a ∈ (A, β ]

is in fact identical to the Freeze-Rate method.
7That is, only the first moment of period fertility proportions (i.e., the mean age at birth) is

allowed to change over time, while the second and higher order moments of this pattern remain

constant.
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Table 1: Mean and Standard Deviation for Distribution

of Coefficient Sums by Parity

birth order all 1 2 3+
mean 1.0064 1.0082 1.0046 1.0020
std 0.0273 0.0218 0.0218 0.0253

number of
completed cohorts 863 272 272 272

Note: For details regarding our data set refer to Section 3.

Note that the assumption in Proposition 2 is the same as in Bongaarts and

Feeney (1998),8 and that the Freeze-BF1 and the Freeze-BF2 are theoretically iden-

tical when the assumption is met. van Imhoff and Keilman (2000) and van Imhoff

(2001) showed that this constant shape assumption is violated by the data in coun-

tries such as Italy, Netherlands, and Norway. Table 1, however, presents that the

distribution of
∫ β

0
w(a, c + a) da across all completed cohorts from our data set is

highly concentrated around one.

Distinct from previous approaches, this paper proposes another innovative strat-

egy to complete the CTFR without explicit assumptions regarding future fertility

rates. We estimate the cumulated proportion of fertility by truncation age A, i.e.

α(A, c) =

∫ A

0

f(a, c+ a) da
/
CTFR(c),

and then use
∫ A

0
w(a, c+a) da as the estimate of α(A, c) to inflate the observed part:

est. CTFR(c) =

∫ A

0

f(a, c+ a) da

∫ A

0

w(a, c+ a) da

. (8)

Hereafter we denote this method by the Proportion-Inflation.

8The assumption in Proposition 3 is slightly weaker, for the time period is from T rather than

from c.
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Before examining the empirical performance of methods in predicting the CTFR,

it is worthwhile to incorporate (and interpret) the Freeze-BF1, the Freeze-BF2, and

the Proportion-Inflation in a common context implied by Proposition 2 that the

CTFR of cohort c can be regarded as not only a linear combination but also a

weighted average of the BF values throughout the whole fertility profile (from time

c through time c + β).9 The Freeze-BF1 and Freeze-BF2 methods in effect impute

the weighted average of BF values in the unfinished part (from time T through time

c + β) by BF(T ), while the Proportion-Inflation method directly assumes that the

weighted average of observed BF values (and the weighted average of unfinished BF

values as well) equals the CTFR(c). 10 One can therefore expect a poor performance

from these tempo-adjusted methods when the weighted average of unfinished BFs

severely deviates from BF(T ) or CTFR(c). The deviation is usually caused by a

strong quantum effect.

3 Data, Experiment Design, and Estimation Details

The data employed in this study are age-specific fertility rates (ASFRs) by one-year

period and by single-year age group, taken from the Human Fertility Database11 and

the Eurostat Database, downloaded in August, 2011. We restrict our analysis to the

9A linear combination casts no restrictions on coefficients, while a weighted average requires

the sum of all coefficients to equal one.
10An analogy may be useful. Suppose that there are a number of people intending to use an

elevator with a weight limit and that some of them have entered the elevator. If one wants to

predict the total average weight but has only observed the weight of each individual who has

entered, one can assume that the average weight of the people waiting outside equals the weight

of the last person having entered, or one can use the average weight of the people inside as an

estimate directly. The logic of the former is the same as that of the Freeze-BF methods, while the

logic of the latter is identical to that of the Proportion-Inflation method. One can regard the only

difference between the Freeze-BF1 and Freeze-BF2 methods as how they estimate the number of

those who wait outside.
11Human Fertility Database. Max Planck Institute for Demographic Research (Germany) and

Vienna Institute of Demography (Austria). Available at http://www.humanfertility.org.
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set of single-year age groups 15-44 and exclude countries whose data contain less

than 10 completed cohorts, so not all countries listed in the databases are included.

In addition, we use the separate schedules for East and West Germany, as well as for

England/Wales and Scotland in the U.K., rather than their combined data. Thus

there are 27 schedules in total, as listed in Table 2. Since non-parity specific data

are more readily available than parity-specific data, there are 863 completed cohorts

from the former and 272 from the latter, respectively.

For each particular cohort, 25 CTFR predictions with partial fertility informa-

tion from age 15 through a chosen truncation age (varying between 19 and 43) are

produced accordingly. To measure the extent to which an estimated CTFR approx-

imates to the actual CTFR, the prediction error (PE) index is designed to measure

how much of the proportion of unfinished fertility has not been correctly estimated,

i.e.

PE =
est. CTFR− CTFR

CTFR− obs. CTFR
× 100%,

so that comparisons can be made across various degrees of truncation. For example,

suppose that the actual CTFR is 2.0 and the prediction is 1.8, the PE is −16.67%

when the observed fertility (obs. CTFR) is only 0.8, indicating that 83.33% of the

unfinished part has been estimated. In contrast, if the actual and estimated CTFR

remain unchanged while the observed fertility increases to 1.2, then the PE becomes

−25.00%, indicating that only 75.00% of the unfinished part has been estimated.

The positive or negative sign of PE represents whether the CTFR is over- or under-

estimated. Refering to Sobotka (2003, Table 12), we evaluate the performance of

an estimate by the following classification considering an absolute PE as very good

(< 7.5%), good (7.5–12.4%), average (12.5–19.9%), poor (20.0–37.5%), and very
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Table 2: Data from the Human Fertility Database and the Eurostat

all-birth-combined parity-specific

country periods completed cohorts periods completed cohorts

from the Human Fertility Database

Austria 1951–2008 1936–1964 (29) 1984–2008 NA
Canada 1921–2007 1906–1963 (58) 1944–2007 1929–1963 (35)

Czech Republic 1950–2009 1935–1965 (31) 1950–2009 1935–1965 (31)
Estonia 1959–2009 1944–1965 (22) 1959–2009 1944–1965 (22)
Finland 1939–2009 1924–1965 (42) 1982–2009 NA
France 1946–2009 1931–1965 (35) NA NA

Germany
East 1956–2009 1941–1965 (25) 1956–1989 NI
West 1956–2009 1941–1965 (25) NA NA

Hungary 1950–2009 1935–1965 (31) 1952–2009 1937–1965 (29)
Netherlands 1950–2009 1935–1965 (31) 1950–2009 1935–1965 (31)

Russia 1959–2009 1944–1965 (22) 1959–2009 1944–1965 (22)
Slovakia 1950–2009 1935–1965 (31) 1950–2009 1935–1965 (31)
Sweden 1891–2008 1876–1964 (89) 1970–2008 1955–1964 (10)

Switzerland 1944–2007 1929–1963 (35) NA NA
U.K.

England/Wales 1938–2009 1923–1965 (43) NA NA
Scotland 1945–2009 1930–1965 (36) NA NA

U.S. 1917–2006 1902–1962 (61) 1917–2006 1902–1962 (61)

from the Eurostat

Belgium∗ 1954–2009 1939–1965 (27) NA NA
Bulgaria 1960–2009 1945–1965 (21) NA NA
Denmark 1950–2009 1935–1965 (31) NA NA

Greece 1961–2009 1946–1965 (20) NA NA
Iceland 1963–2009 1948–1965 (18) NA NA

Italy 1952–2008 1937–1964 (28) NA NA
Lithuania 1970–2009 1955–1965 (11) NA NA
Norway 1961–2009 1946–1965 (20) NA NA
Portugal 1950–2009 1935–1965 (31) NA NA

Spain 1971–2009 1956–1965 (10) NA NA

Note: 1. When a country is included in both databases, we prioritize data from
the Human Fertility Database.

2. Countries whose data are insufficient to construct at least 10 completed
cohorts (covering age groups 15–44) will be excluded from the analysis.

3. In parentheses are numbers of completed cohorts.
4. NA denotes that data are not available, while NI denotes that data are

not included in the analysis because the number of completed cohorts is
less than 10.

5. The 1917–1932 U.S. data are taken from Heuser (1976).
∗ Data in 2001 and 2002 are missing for Belgium. We use spline smoothing

to interpolate these values by age.
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poor (> 37.5%).12 In addition, due to the fact that a truncation age A corresponds

to a truncation percentile α(A, c) which varies across cohorts and birth orders, we

construct PE distributions (or alternatively distributions of the absolute PE) by

truncation percentile rather than by truncation age to evaluate the performance of

an approach.

This paper investigates and compares the performance of five aforementioned

methods, two of which are conventional and three tempo-adjusted. Specific estima-

tion details:

1. The Freeze-Rate method, as described in Equation (4), uses fertility rates in

the latest year observed.13

2. The Linear-Extrapolation method, as specified in Equation (5), sets k = 4

and forces the estimated fertility rates to level after 5 steps of extrapolation.

A negative extrapolation is replaced with zero.

3. To apply the Freeze-BF1 and Propotion-Inflation methods, we need to deter-

mine the value of w(a, c + a), a ∈ [0, A], which requires a calculation of r(t),

the change in the mean age of childbearing (MAC) at time t, t ∈ [c, c+A]. The

calculation basically follows the algorithm specified in Bongaarts and Feeney

(1998, footnote 6), [r(t+1)−r(t−1)]/2. But for the first year c and the last year

T of the observed part, we compute r(c) and r(T ) with MAC(c+1)−MAC(c)

and MAC(T )−MAC(T − 1), respectively.

12Because Sobotka’s error index takes the completed CTFR rather than the unfinished CTFR

as the denominator, a conversion of cutting points is called for. Such a conversion is made by

assuming the truncation percentile at mean age of childbearing to be 60%.
13The authors have tried using average fertility rates in the five latest years observed but did

not get better results when predicting the CTFR.
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4 Results

4.1 Average Performance of Absolute Prediction Error

Focusing on the absolute value of prediction errors, Table 3 presents the average

performance (i.e. the mean absolute PE) of each method across various ranges of

truncation percentile and birth orders. Possibly the most striking result observed in

the table is that: when the truncation percentile is in the range of [10%, 30%) and the

birth order is 1, the Proportion-Inflation method yields a mean absolute prediction

error as low as 4.99%, outperforming all the other methods investigated in this paper,

especially the two conventional approaches. This result is so remarkably impressive

because the truncation percentile of the mean age at birth, which is often adopted

as a reference age, generally falls between 50% (the median) and 75% (the third

quartile), indicating that such “very good” prediction performance is obtained with

relatively little information. In addition, the Proportion-Inflation method extends

its advantage by providing “very good” or “good” predictions in other ranges of

truncation percentile and in the case of birth order 2 when the truncation percentile

is no more than 75%. Only when the truncation percentile is in [75%, 85%) where a

large proportion of fertility has been observed, the leading place for predicting the

CTFR of birth orders 1 and 2 is earned by the Freeze-BF2 method. Moreover, as

for the all-birth-combined fertility, the Freeze-BF2 method performs the best or the

second best while its performance in all ranges of truncation percentile is consistently

classified as “average”. Finally, the Linear-Extrapolation method always performs

the best if the birth order is 3 and above, but its performance never falls into a

category better than the “average”.
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Table 3: Average Performance by Method, Truncation Percentile, and Birth Order

Proportion Linearbirth order N Freeze-BF1 Freeze-BF2 Freeze-RateInflation Extrapolation

truncation percentile ∈ [10%, 30%)

all 2,627 13.57 13.46 13.32 17.40 18.66
1 585 6.17 6.04 4.99 10.19 11.74
2 700 9.31 9.15 7.82 11.91 15.94
3+ 829 27.35 27.36 31.20 27.62 27.22

truncation percentile ∈ [30%, 50%)

all 2,344 13.98 13.71 14.05 17.28 16.79
1 507 6.74 6.74 5.52 11.74 11.03
2 581 10.28 10.38 8.69 13.70 15.71
3+ 664 23.53 23.69 29.90 23.38 22.62

truncation percentile ∈ [50%, 65%)

all 1,909 14.35 14.05 15.40 17.44 16.41
1 436 7.79 7.65 6.49 12.74 11.07
2 503 10.83 11.15 9.61 14.18 14.62
3+ 530 22.09 22.20 31.48 21.64 21.15

truncation percentile ∈ [65%, 75%)

all 1,536 14.78 13.55 17.14 17.38 15.63
1 370 9.47 8.60 8.43 13.20 10.91
2 376 11.77 11.53 11.26 15.18 15.71
3+ 419 21.18 20.73 32.27 19.59 19.09

truncation percentile ∈ [75%, 85%)

all 2,024 16.83 13.94 20.92 17.76 15.40
1 527 12.16 9.13 11.65 13.55 10.87
2 518 13.83 11.80 13.72 15.16 15.66
3+ 530 20.92 18.63 35.20 18.12 16.86

Note: Numbers in the table are mean absolute prediction errors (in %). For
each pair of birth order and truncation percentile, the best performance
is noted in bold and the second best in italic. We classify an absolute
prediction error as very good (< 7.5%), good (7.5–12.4%), average (12.5–
19.9%), poor (20.0–37.5%), and very poor (> 37.5%).
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4.2 Distribution Function in Absolute Prediction Error

Figure 1 further provides a comprehensive comparison over the five methods by de-

picting their distribution functions (i.e. cumulated density functions) in absolute

PE. When fertility is non-parity specific, the distribution curve of the Freeze-BF2

method lies mostly above the others (especially of the conventional methods), re-

gardless of the range of truncation percentile. By observing the distributional curve

of the Freeze-BF2 method, we note that no more than 40% (60%) of absolute predic-

tion errors are categorized “very good” (“good”) while more than 20% are “poor”.

This reveals the distributional details of the corresponding average numbers shown

in Table 3.

When fertility is of first birth, in contrast, the distribution curve of the Proportion-

Inflation method lies mostly above the other curves, except when the truncation per-

centile is in the range of [75%, 85%). In the case of truncation percentile below 65%

(i.e. in the first three ranges), about 70% (90%) of absolute prediction errors by the

Proportion-Inflation method are categorized “very good” (“good”) while less than

5% (none) are “poor” (“very poor”). In the truncation percentile range of [65%,

75%), the curves of the Freeze-BF2 and Proportion-Inflation methods are virtu-

ally indistinguishable, but with a trunction percentile of [75%, 85%) the Freeze-BF2

method dominates. Essentially similar but slightly worse results are found when

fertility is of second birth; all curves lean further to the right.

When fertility is of birth order 3 and above, however, all methods exhibit a cer-

tain proportion of absolute prediction errors larger than 70% since no curve reaches

1.0 within the range presented in the figure. At least 10% of absolute prediction

errors are larger than 37.5%, the threshold beyond which a PE is categorized “very

15
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poor”, regardless of method or truncation percentile range, suggesting that none

of the methods investigated in this paper can provide satisfactory predictions for

high birth orders. Furthermore, the distribution curve of the Linear-Extrapolation

method lies mostly below that of the Freeze-BF2 method for lesser prediction errors

but lies above when larger prediction errors are cumulated. The fact that “very

poor” predictions are less frequently observed when using the Linear-Extrapolation

method explains why this method yields the lowest mean absolute PEs in Table 3.

4.3 Further Examination Across Cohorts

As mentioned in Section 2, a poor performance by tempo-adjusted methods is ex-

pected when there exists a strong quantum effect. In this subsection, we analyze

prediction errors in further detail by dividing birth cohorts into three subgroups: co-

horts 1910–30, cohorts 1935–50, and cohorts 1950–65. Note that we select Canada,

Netherlands, Sweden, and the U.S. as representative countries because of their wide

data ranges, but not every subgroup contains cohort information from all of the four

representative countries due to data availability. Figure 2 presents their CTFR and

MAC curves by birth order, providing background information about the quantum

and tempo effects for the three subgroups. Respectively, women in these three sub-

groups experienced their main childbearing ages during the baby-boom, baby-bust,

and post baby-bust periods, accompanied with an increasing, decreasing, and rela-

tively flat CTFR. In addition, the corresponding MAC curves show that they were

advancing, in the transition from advancement to postponement, and postponing

childbearing. Overall, the change in the all-birth-combined CTFR is mainly decided

by that of birth order 3 and above. The extent of change in the CTFR increases
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Figure 3: Distribution Comparison Across Three Cohort Subgroups

Note: ‘FB2’, ‘PI’, and ‘LE’ represent the Freeze-BF2, Proportion-Inflation, and
Linear-Extrapolation methods, respectively, and the truncation percentile is
in the range of [10%, 30%). Broken lines in each panel mark the +20% and
−20% thresholds beyond which a PE is categorized “poor”.

as the birth order gets higher for the first two subgroups, but all CTFR curves re-

main relatively flat for subgroup 3. More specifically, the absolute average change in

quantum across the cohort scale is much larger for subgroup 2 than for subgroup1

in the birth order 3+ and thus all-birth-combined cases, but slightly smaller in the

birth order 1 and birth order 2 cases. In contrast, the absolute average change in

tempo across the cohort scale is larger for subgroup 3 than for subgroup 1, regardless

of birth order.

Figure 3 displays prediction error distributions of the Freeze-BF2, Proportion-

Inflation, and Linear-Extrapolation methods for three subgroups of cohorts when

the truncation percentile is in the range of [10%, 30%). For clarity, prediction error

distributions of the Freeze-BF1 and Freeze-Rate methods are not shown, and figures
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regarding other truncation percentile ranges are omitted due to the similarity in

pattern. They are available upon request from the authors. Each box-and-whisker

plot provides five summary statistics of a PE distribution: the bottom and top of

the box are the lower and upper quartile, the band near the middle of the box is the

median, and the ends of the whisker represent the minimum and maximum. In each

panel we mark the +20% and −20% thresholds beyond which a PE is categorized

“poor” with broken lines.

Figure 3 provides several informative observations by which one can conclude

that the performance of CTFR estimators is mainly influenced by the quantum

effect rather than the tempo effect. First of all, the most significantly deviated PE

distribution occurs in the case of third birth and above for subgroup 2; quite a lot

of PEs fall outside the ±20% interval (i.e. in the “poor” or “very poor” regions).

Second, the PE distribution deviates much more for subgroup 2 than for subgroup

1 in the all-birth-combined and birth order 3+ cases but slightly less in the first and

second birth cases. These two observations are consistent with the aforementioned

patterns in quantum across subgroups and birth orders. In contrast, the deviation

mostly falls within the ±20% interval for subgroup 3 regardless of birth order, given

the fact that women in this subgroup experienced a rather mild quantum change but

quite a strong change in tempo. Also note that a Linear-Extrapolation estimate,

compared with Freeze-BF2 and Proportion-Inflation estimates, is more likely to

deviate from the actual CTFR for subgroup 3 regardless of birth order, which is not

unexpected since there is no tempo adjustment designed in this estimator. To sum

up, Figure 3 suggests that: when the quantum effect is relatively mild, the tempo-

adjusted methods should take priority over the conventional methods in selective
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implementation. In the presence of a strong quantum change, although the tempo-

adjusted methods are outperformed by the conventional methods, there is in fact

no method that reliably provides satisfactory CTFR predictions.

5 Summary

This paper establishes a formal relationship between period and cohort measures

with which one can appropriately respond to the literature that casts doubts on the

usefulness of period measures as cohort estimators. Specifically, when adjusted or

unadjusted period measures are utilized in a many-to-one manner rather than in

the conventional one-to-one manner, the related applications are not limited to re-

peatable events. Furthermore, based on the formal relationship, this paper proposes

three tempo-adjusted predictors of cohort quantum which are easy to implement.

Empirical evidence from Canada, the U.S., and 23 European countries suggests

that our predictors provide satisfactory estimates and outperform the conventional

Freeze-Rate and Linear-Extrapolation methods in most cases, particularly when the

observed cohort experience is truncated at a very young age. As for cases where

there exists a strong quantum effect, our detailed analysis shows that there is so far

no ideal method (at least among the five investigated in this paper) whose predic-

tion of the CTFR is statistically reliable, implying that future studies along this line

should devote some effort to overcoming the deviation of prediction caused by big

quantum changes.
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Appendix

A1 Proof of Proposition 2

Proof. By the assumption of a constant period pattern for p(a, t) at any time t,

p(a, t) = p(a− R(t), t0) with R(t) =

∫ t

t0

r(k) dk.

This states that p(a, t) at time t has the same shape as p(a, t0) at an arbitrary chosen

time t0, but has shifted along the age axis by R(t) years. For convenience, let t0 = c.

Also, let

u = a− R(c+ a) = a−
∫ c+a

c

r(k) dk

so that u = 0 if a = 0 and u = β′ = β − R(c + β) if a = β. Differentiating both

sides of the equation gives du =
[
1− r(c+ a)

]
da. Thus,

∫ β

0

w(a, c+ a) da =

∫ β

0

[
1− r(c+ a)

]
p(a, c+ a) da

=

∫ β′

0

p(u, c) du = 1

can be verified by the property mentioned in Equation (1). Note that β′ can be a

large finite number such that p(a, c) = 0 for all a ≥ β′ by choosing an appropriate

β value.

A2 Proof of Proposition 3

Proof. Assuming that the period pattern for p(a, t) is constant for time t ∈ [A, β ],

we apply the same technique as in the proof of Propostion 2 but let t0 = c+A = T .

Therefore,

p(a, t) = p(a−R(t), c+ A) with R(t) =

∫ t

c+A

r(k) dk.
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Let

u = a− R(c+ a) = a−
∫ c+a

c+A

r(k) dk

so that u = A if a = A and u = β′′ = β − R(c + β) if a = β. Differentiating both

sides of the equation gives du =
[
1− r(c+ a)

]
da. Thus,

∫ β

A

w(a, c+ a) da =

∫ β

A

[
1− r(c+ a)

]
p(a, c+ a) da

=

∫ β′′

A

p(u, c+ A) du =

∫ β′′

A

p(u, T ) du.

Note that β′′ can be a large finite number such that p(u, T ) = 0 for all u ≥ β′′ by

choosing an appropriate β value.
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Sobotka, Tomáš (2003), “Tempo-Quantum and Period-Cohort Interplay in Fertility
Changes in Europe: Evidence from the Czech Republic, Italy, the Netherlands
and Sweden”, Demographic Research, 8, 151–214.

van Imhoff, Evert (2001), “On the Impossibility of Inferring Cohort Fertility Mea-
sures from Period Fertility Measures”, Demographic Research, 5, 23–64.

van Imhoff, Evert and Nico Keilman (2000), “On the Quantum and Tempo of Fer-
tility: Comment”, Population and Development Review, 26(3), 549–553.

Willekens, Frans and Nazli Baydar (1984), “Age-period-cohort models for forecast-
ing fertility”, Working Paper No. 45, NIDI, The Hague.

25


