TITLE: It Takes a Household? Co-residential Family Networks and Child Well-Being ${ }^{1}$ AUTHORS: Lindsay Monte, Jason Fields

INTRODUCTION

Single parenthood is often implicated as the proximate cause of many of the disadvantages that children face, either post-divorce or as children born to unmarried parents (McLanahan and Sandefur, 1994, Waite \& Gallagher, 2000). However, although the moniker of "single parent" connotes a parent raising children in isolation, we know that very few single parents actually parent entirely alone (Edin \& Kefalas, 2005, England \& Edin, 2009, Edin \& Lein, 1997, Stack, 1974); grandparents, other relatives and parent partners all frequently play roles in the well-being of single-parent households with children. In this paper, we examine the significance of co-resident extended kin networks for the well-being of the children in both single-parent and two-parent households.

Using the 2004 Survey of Income and Program Participation (SIPP) panel data collected by the US Census Bureau, we use the constellation of adults with whom children live to examine the divergent roles that different adults play in the well-being of children in both single-parent and two-parent households. We use household rosters, household relationship matrices and a number of other relational pointers to paint a dynamic longitudinal portrait of children's families, writ large. We then use these networks to predict later measures of well-being.

We examine differences in household income, public assistance use, and subsidy usage. We control for basic demographic characteristics of children and parents, as well as measures of the families' assorted life course trajectories. This allows an assessment of the repercussions of the absence of one of two parents for child and family well-being, and whether the presence and nature of an extended residential network ameliorates some of these negative effects.

[^0]
LITERATURE REVIEW

Although living with only one biological parent has been found to have negative repercussions for the children of single parents (Amato 2005, McLanahan and Sandefur, 1994), single parenthood rarely happens in true isolation. Rather, many single parents live with partners or their own extended family as they work to raise their children (Bumpass and Raley, 1995, Fields, 2003). In this analysis, we examine the role of more extended family networks on the well-being of single parent families and the children within them.

Regardless of the number of parents with whom a child lives, other non-parent adults are not uncommon in children's households. For example, by the late 2000s, about 20% of all children lived with someone who was neither a parent or a sibling, with about 10% of all children living specifically with a grandparent; the majority of these households also include at least one parent (Kreider \& Ellis, 2011).

Kin networks have repeatedly been shown to affect the well-being of adults (see, for example, Bengtson, 2001, Eggebeen \& Hogan, 1990, Hogan, Eggebeen \& Clogg, 1993, and Jackson, 1998). For parents, the support of extended networks has been shown to have extensive economic and personal implications. Social support networks, and primarily related family, provide both child care (Kisker \& Ross, 1997) and financial assistance (see Lee \&Aytac, 1998, for a review). However, networks also often provide emotional support (Henley et. al, 2005) and housing (Angel \& Tienda, 1982), which are also associated, although indirectly, with improved financial well-being, particularly among low-income parents.

However, most of the work that addresses the role of extended family networks for children's well-being focuses on grandparents, and finds that grandparents play an important role in children's economic well-being. That is, although children in grandparent-headed households have been found, on average, to face greater financial disadvantage than children in two-parent
households, children in three generation households are generally found to fare better than children living in single-mother households (Cox and Pebley 1999; Brandon 2000). In this analysis, we extend the reach of prior research and examine the role of a larger constellation of relatives and non-relatives with whom children live in the financial well-being of children and their parents.

DATA

We use data from the Survey of Income and Program Participation (SIPP). The SIPP is a national survey administered by the US Census Bureau. The survey design is a continuous series of national panels, with sample size ranging from approximately 14,000 to 36,700 interviewed households. The duration of each panel ranges from $21 / 2$ years to 4 years. The SIPP sample is a multistage-stratified sample of the U.S. civilian non-institutionalized population.

Sample households within a given panel are divided into four random subsamples of nearly equal size. These subsamples are called rotation groups and one rotation group is interviewed each month. Each household in the sample was scheduled to be interviewed at four-month intervals over a period of roughly four years, usually beginning in February 2004. The reference period for the questions is the four-month period preceding the interview month. The most recent month is designated reference month four, the earliest month is reference month one. In general, one cycle of four interview months covering the entire sample, using the same questionnaire, is called a wave. For example, Wave 1 rotation group 1 of the 2004 Panel was interviewed in February 2004 and data for the reference months October 2003 through January 2004 were collected.

The main objective of SIPP is to provide accurate and comprehensive information about the income and program participation, and the determinants thereof, of individuals and households in the United States. SIPP offers detailed information on cash and noncash income on a monthly basis. The survey also collects data on taxes, assets, liabilities, and participation in government transfer
programs. SIPP data allow the government to evaluate the effectiveness of federal, state, and local programs. For this analysis, we rely on observations from the 2004 panel of the SIPP.

About the 2004 SIPP Panel ${ }^{2}$

In Wave 1, the 2004 SIPP 3 began with an eligible sample of about 62,700 Housing Units
(HUs). About 11,300 of these HUs were found to be vacant, demolished, converted to nonresidential use, or otherwise ineligible for the survey. Field Representatives (FRs) were able to obtain interviews for about 43,700 of the eligible HUs. FRs were unable to interview approximately 7,700 eligible HUs in the panel because the occupants: (1) refused to be interviewed; (2) could not be found at home; (3) were temporarily absent; or (4) were otherwise unavailable. Thus, occupants of about 85 percent of all eligible HUs participated in the first interview of the panel.

For subsequent interviews, only original sample people (those in Wave 1 sample households and interviewed in Wave 1) and people living with them are eligible to be interviewed.

The SIPP sample includes original sample people if they move to a new address, unless the new address was more than 100 miles from a SIPP sample area. In this case, FRs attempt telephone interviews. ${ }^{4}$ In each of these waves, FRs were unable to interview some of the eligible housing units

[^1]because the occupants either directly or indirectly refused to be interviewed in the same manner described for Wave 1 or moved to an unknown address. ${ }^{5}$

Because of budget constraints, a 53\% sample cut occurred at Wave 9. Essentially, 76 non-self-representative Primary Sampling Units (PSUs) were dropped from the sample, as well as 33% of the sample in self- representative PSUs. This resulted in approximately 21,300 eligible HUs for Wave 9. Out of these 21,300 HUs, FRs were able to interview about 16,600 HUs for Wave 9, about 16,200 HUs for Wave 10 , about 15,900 for Wave 11 , and about 16,000 HUs for Wave 12.6

We use all available observations for all children surveyed over the course of the full 2004 SIPP panel (Waves 1-12), resulting in a sample of 31,066 children between the ages of 1 and 15, and 832,791 child-month observations. ${ }^{7}$

METHODS

The data are set up longitudinally, and Cox proportional hazard models are run modeling the hazard of various, household-level economic well-being markers dependent on the composition of the child's household over time. All observed children are used, and standard errors are clustered at the household level to adjust for the interrelatedness of sibling observations.

Individual child-month records were read from the internal (not publicly released) edited files for all months in which the child in question was between the ages of one and fifteen ${ }^{8}$ and was in sample. These data include information on static demographic indicators (race, birthdate,

[^2]gender, etc.) as well as time-varying information (such as where and with whom the child lived, parent marital status, and household income by month).

Family configurations are determined using a number of different indicators. In each month in which a child is in sample, "parent pointers" are derived. Every respondent who lives with someone of the appropriate gender who is at least 12 years older than the respondent is asked whether they live with a mother and/or a father, and if so, who that person is and what type of parental relationship they have. ${ }^{9}$ These pointers include biological, step, and adoptive parent relationships, and are present at every wave in which the respondent participated.

Much of the literature defines two-parent households either by marriage ${ }^{10}$ (two married parents) or biology (two biological parents). However, for the purposes of this paper, we used a combination of marriage, biology and respondent responses to determine whether a child lived with two 'parents'. That is, although married and/or biological parents are the benchmark, we expand on the definition of two-parent households to include informal, respondent-defined twoparent families, including non-biological cohabiting "parents." That is, if a parent is not married, data is collected from the respondent about a second parent for each child surveyed; if a mother, for example, indicates that her boyfriend is filling a paternal role with the child (regardless of whether that role is legally documented), then we code the child as living in a two-parent household.

Single-parenthood is defined in a similar manner. Children are determined to be living in a single-parent household if they have data in only one parent pointer. Therefore, in the above example, if the same mother does not believe her coresidential boyfriend to be a father figure to her child, she would respond negatively to the question about whether her child has a father in the

[^3]house. Under these circumstances, her child would only point to her and so would be classified as living in a single-parent family.

Children's relationships with the more complex network of individuals with whom they lived were determined using three different indicators. Relationships were first determined using the complete relationship matrix that was gathered in the Wave 2 survey. In the relationship matrix supplement, the relationships of each person to everyone else in the household are obtained, and include such complexity as half-sibling relationships and parents who are both step- and adoptive parents.

However, anyone who did not answer the Wave 2 survey does not have this information, so we also use the parent pointers available in all waves to identify siblings, parents, grandparents, and, to the extent possible, aunts and uncles, at each month of observation. Finally, to determine relationships outside of parent-child relationships, we also use information on each individual's relationship to the household reference person, who is the person who owns or rents the home in which the respondent lives. This allows such determinations as the presence of an unrelated person in the household (i.e., if the respondent reports being biologically related to the reference person - child, grandchild, sibling, etc. - and someone else in the household reports being unrelated to the reference person - housemate, roommate, other non-relative - then that person is determined to be also unrelated to the child in question.

Time-varying, dichotomous measures were then created for parent presence (single-parent or two-parent family) and for household composition (grandparent present, other adult relative present, unrelated adult present ${ }^{11}$) at a monthly level. Additional composition measures include measures of number of siblings, whether a single parent has an unmarried partner in the home ${ }^{12}$,

[^4]whether parents in two-parent households are married ${ }^{13}$, and a control measure indicating whether there is someone in the household for whom the relationship to the child cannot be determined.

We also include a time-varying control indicating whether the respondent's parent is the household reference person, that is, the person who owns or rents the home. We include this measure as a proxy for dependency; if the child's parents own the home, other members of the household are more likely to be dependent, but if the child is living in the home of someone who is not their parent, then the child (and their parents) are more likely to be the dependents.

Other time varying controls include child age, turbulence - as measured by changes in residence - and changes in household composition (measured as the addition or deletion of someone from the household roster). We also include time invariant controls, such as measures of children's Hispanic ethnicity, nativity, gender, and race (Black alone, White alone, Asian alone, and an Other category, which includes all multi-race children and children who indicated any other races).

Predictors of interest are measures of household composition, as follows: presence of at least one grandparent, presence of at least one non-grandparent adult relative, and presence of some other adult non-relative. For these purposes, the standard Census Bureau definition of 'adult' is applied and these categories represent individuals age 15 or older.

The outcomes of interest are three different measures of the financial well-being of the household, each modeled twice. First is a measure of household poverty, measured dichotomously using the federal poverty line (FPL), and determining poverty using household income relative to the number of people in the household. This is modeled at a monthly level. Two outcome measures are derived from this monthly poor/not poor distinction, and each is only allowed to occur once as an outcome. First, we model the entry into poverty as the month in which a household transitioned

[^5]from being not poor into poverty, based on the relationship between household income and household size. Second, we model the exit from poverty, measured as the month in which a household's income is sufficient, relative to household size, to move that household over the FPL and out of poverty.

Additionally, we model the use of means-tested cash ${ }^{14}$ and non-cash ${ }^{15}$ benefit receipt. Both of these measures are also modeled twice, first as the transition into receipt, with receipt being the outcome of interest, and second as the transition out of receipt, with non-receipt as the outcome of interest.

Cox proportional hazard models are run for each outcome. The regressions model the odds of the outcome (i.e., entry into poverty, exit from poverty, starting cash benefit receipt, starting noncash benefit receipt). The Cox model allows for missing observations within the observed months and so allows all available observations to be used.

As repeated economic shifts are confounded with the original, each outcome of interest is only allowed to occur once for each series of child-months. Observations are included when the child in question was in sample, as defined by survey response and parent presence measures, and dating from the first observation in which the outcome was NOT true until such time as the outcome occurs or the observations are censored. The same is also true of parenthood circumstances.

That is, imagine a child is living with two parents, and the household income is above the threshold for poverty for their household size. This child's child-month observations would be included in the model for the hazard of entering poverty for the children of two-parent households

[^6]until such time as the child's household became poor (outcome), or the household became a singleparent household (removal from eligible sample), or observations cease (right censoring).

Results are presented as odds ratios, and each regression is run separately for two-parent and single-parent families. Models are unweighted, as available longitudinal weights require a common period of observation for all respondents, and the use of these weights would limit the useable sample. Therefore, these data cannot be presumed to be nationally representative.

RESULTS ${ }^{16}$

Table 1 presents the sample means, divided by family status at first observation. ${ }^{17}$ Notably, given the way that single-parent and two-parent families are defined in the sample, there is some overlap between groups. For example, 7.2% of children who are first observed in two-parent households spend some time in a single-parent household over the course of observations. ${ }^{18}$ Also notable is that, given that a two-parent household is not defined by marriage, but instead by respondent report, only 86% of the two-parent households are married, and about 7% of the single-parent families feature a parent's unmarried partner. However, relatively few children in the sample, regardless of family composition, experience changes in household composition over the course of observations; only about 4\% of children in single-parent families, and about 3\% of children in two-parent families, experienced this familial turbulence.

A significant distinction between the two samples is the presence of other adults in the household; children in single-parent families are significantly more likely to be observed living with a grandparent or other adult relative, as well as adult non-relatives. Notably, single-parent

[^7]households are also significantly less likely to have the parent be the person who owns or who is renting the home.

Children in single-parent families are also more likely to experience economic disadvantage, or to rely on outside assistance, than are children in two-parent families, and this is consistent across all measures of poverty and benefit receipt. The children are also more likely to be Black, and less likely to be White or Asian, they are slightly older at outset, are more likely to be native born, and have fewer siblings, on average, than do children in two-parent families.

Table 2 presents the results for the entry into poverty. Many of the significant predictors have the same association with the outcomes regardless of family structure. For example, changes in residence and changes in household composition both increase the hazard of entry into poverty in all households. Similarly, Black children and Hispanic children both consistently face a higher hazard of entering poverty, as do children with more siblings, no matter how their families are configured, while older children have lower hazards. Additionally, the children of both married parents (in two-parent households) and partnered parents (in single-parent households) have lower hazards of poverty entry.

However, Table 2 also shows divergences based on family composition. For example, only in single-parent households are grandparents and adult non-relatives protective against the hazard of poverty entry; non of the non-parent co-resident adults are significantly associated with the hazard of poverty in two-parent families. Similarly, children in single-parent households in which the parent is not the homeowner have a significantly lower risk of poverty entry. Other factors that are predictive of the hazard of entry into poverty include an increased hazard of entering poverty for children whose race is neither White, nor Black, nor Asian in single-parent families. Also significant is whether the child is native born, which reduces the hazard that children in two-parent families will enter into poverty.

Grandparents are again instrumental in the exit from poverty in single-parent families (see Table 3). However, household composition does not change the role of other adults (relative and non-relative) as regards the hazard of poverty exit. Both adult relatives who are not grandparents and adult non-relatives increase the likelihood of exit from poverty for all households, regardless of composition. Having parents who are partnered (in single-parent households) is also significantly associated with increased hazard of poverty exit, while moves reduce the likelihood that children in two-parent families will leave poverty. Race and ethnicity are differently significant across the family types, while children with more siblings face a lower likelihood of poverty exit.

Notably, household composition changes are significantly associated with an increase in the hazard of poverty exit for single-parent families, even though household composition changes are also significantly associated with the entry into poverty for all families in Table 2. The distinction lies in the different samples for each set of models. That is, for children who are above poverty, changes in household composition are significantly associated with the odds of moving into poverty, and for children who are poor and who are living in single-parent households, changes in household composition are associated with a increased hazard of exit from poverty.

Regardless of family composition, the hazard of cash benefit receipt, which includes programs such as TANF and SSI, is fairly uniform (see Table 4). The addition of grandparents and other relatives significantly increase the hazard of cash benefit receipt for all families, and children in both married two-parent families, and partnered single-parent families, have a reduced hazard of receipt. Moves and changes in family composition also increase the hazard of benefit receipt for all families. Black children also face a higher hazard of cash benefit receipt than do White children, as do children who are neither White, Black nor Asian. Having more siblings is also uniformly associated with an increase in the hazard.

There are some differences by family composition; adult non-relatives only significantly increase the hazard of receipt in two-parent families. Similarly, older children have a reduced
hazard only in single-parent families, and children in two-parent families in which a parent is not the homeowner also face a lower hazard of cash benefit receipt.

Non-cash benefit receipt is less uniform (see Table 5). All additional adults increase the hazard of receipt in two-parent families, but only non-grandparent adult relatives increase the hazard in single-parent families. Similarly, only in two-parent households are married parents, moves, native born children, parents who are not the homeowners, and more siblings associated with significant changes in the hazard of receipt. For children in single-parent families, household composition changes increase the hazard of receipt, while older children face a lower hazard of receipt.

The exits from cash benefit receipt (see Table 6) and non-cash benefit receipt (see Table 7) are largely unrelated to household composition. Only in two-parent households do grandparents reduce the hazard that a child's family will exit non-cash benefit receipt (stated differently, grandparents increase the hazard that children in two-parent families will continue to receive noncash benefits). Children of both married (in two-parent households) and partnered parents (in single-parent households) have an increased hazard of ceasing non-cash benefit receipt. Race, ethnicity and number of siblings are significant predictive of ending non-cash benefit receipt across family forms, while only child age is uniformly predictive of exiting cash benefit receipt. Household composition changes are also associated with higher likelihood of exiting cash benefit receipt in single-parent households.

DISCUSSION

These data suggest that extended family households are significant in the roles they play in the financial well-being of families with children. Co-resident grandparents, and adult nonrelatives, both significantly reduce the hazard that single-parent families will enter poverty, for example, while none of the additional co-resident adults are significantly associated with the
hazard that children in two-parent families will enter poverty. However, all additional adults are significantly associated with an increased likelihood of exiting poverty for children of single parents, while the presence of both adult relatives and adult non-relatives assist in lifting children in two-parent households above the poverty line.

Of course, the same co-resident extended family networks also increase the hazard of benefit receipt. However, the meaning of benefit receipt is not clear in this context. That is, it could be that these adults place an additional burden on already strained family resources and cause a family to need outside assistance. Nonetheless, as the benefits in question are intended to support and supplement the income of families living at the margin, it may also be that the presence of these additional adults allows parents access to programs that improve the well-being of everyone in the household.

Moreover, although it is possible that this is indicative of these other adults joining the household in times of need (that is, presenting a burden to household finances), it seems equally likely that these results could be simply a function of household size. That is, it is more likely that at least one person will receive one of these benefits in a larger household than in a smaller one. More research using more nuanced measures of receipt of assistance is required to see if the findings reported here are of substantive import.

However, other measures of household composition also indicate that household composition has important ramifications for children. Parents' marital or partnership status matters; the children of married or partnered parents generally face lower risks of entry, and higher 'risks' of exit, from most of these markers of economic hardship. This is consistent with prior work suggesting that the additional income in multi-adult households lowers their risks of economic hardship (McLanahan and Sandefur, 1994). Household turbulence and residential moves are also important; both uniformly increase the hazard of both entry into poverty and entry into cash benefit receipt. Although household composition changes also increase the hazard of exit from
poverty and exit from cash benefit receipt in single-parent households, the general trend is for turbulence to be to the detriment of household economic well-being.

Also important is the measure of whether a parent is the householder, although the measure is differently significant depending on whether a child is in a single-parent or two-parent household. For children in single-parent households, living in someone else's house is significantly protective against entry into poverty. For children in two-parent families, living in someone else's home is protective against benefit receipt, both cash and non-cash. These results may suggest different baseline status for children in these two family types, or something different about the outcome measures used.

More research is needed to better inform these results, not least of which because it is important to remember that these results cannot be presumed to indicate a causal relationship. For example, we do not know if a grandparent moved in because a family was starting to struggle, and their presence helped the family stay afloat, or if the parent generation only allows their own parent to join the household if they know that they have the resources to support three generations.

Future research will examine additional markers of well-being, such as academic engagement and food security, in an effort to disentangle the role of household size from household support provided by additional adults. Additionally, in future work, we will attempt to better delineate the attachment of non-related adults to the family in question; the current work does not differentiate rent-paying borders from co-resident friends, which is a limitation of the analysis. Nonetheless, these preliminary results are strongly suggestive of a relationship between household configurations and the economic well-being of families with children.

TABLE 1: Means

| | FULL
 SAMPLE | Two Parent
 Sample (1) | Single-Parent
 Sample (2) |
| :--- | :---: | :---: | :---: | :---: |
| Diff? | | | |

[^8]TABLE 2: Entry Into Poverty

[^9]TABLE 3: Exit from Poverty

	All families				Two-parent families				Single-parent families			
	Coef.	Hazard Ratio	SE	$p>\|z\|$	Coef.	Hazard Ratio	SE	$P>\|z\|$	Coef.	Hazard Ratio	SE	$p>\|z\|$
Grandparent in household	0.41	1.51	0.25	0.09	-0.10	0.90	0.34	0.76	0.98	2.66	0.24	0.00
Another adult relative in household	0.37	1.44	0.11	0.00	0.27	1.31	0.18	0.12	0.35	1.41	0.17	0.04
Adult non-relative in household	0.53	1.69	0.14	0.00	0.46	1.59	0.24	0.06	0.39	1.48	0.20	0.05
Parent is not the homeowner/renter	-0.05	0.95	0.12	0.66	-0.25	0.78	0.25	0.32	0.09	1.10	0.19	0.64
Parents are married	0.81	2.25	0.08	0.00	0.01	1.01	0.13	0.96		NA		
Parent has an unmarried partner	0.86	2.37	0.12	0.00		NA			0.82	2.27	0.24	0.00
Household composition changes	0.74	2.09	0.15	0.00	0.12	1.13	0.29	0.68	1.01	2.74	0.19	0.00
Moves to new residence	-0.12	0.89	0.07	0.10	-0.25	0.78	0.12	0.04	0.04	1.04	0.09	0.65
Child is White alone		Omitte				Omitt				Omitt		
Child is Black alone	-0.25	0.78	0.09	0.00	-0.09	0.92	0.15	0.57	-0.32	0.72	0.11	0.00
Child is Asian alone	-0.46	0.63	0.22	0.04	-0.44	0.65	0.25	0.08	-0.06	0.94	0.48	0.89
Child is none of the above	-0.10	0.91	0.13	0.44	0.18	1.19	0.17	0.31	-0.40	0.67	0.17	0.02
Child's age in years	-0.01	0.99	0.01	0.18	-0.01	0.99	0.01	0.53	0.00	1.00	0.01	0.90
Child is female	-0.02	0.98	0.04	0.55	-0.03	0.97	0.06	0.58	0.00	1.00	0.06	0.98
Child is Hispanic	-0.23	0.79	0.08	0.01	-0.25	0.78	0.11	0.02	-0.14	0.87	0.13	0.29
Child is native born	0.15	1.16	0.14	0.29	0.20	1.22	0.16	0.23	-0.03	0.97	0.25	0.89
Number of siblings in the household	-0.15	0.86	0.03	0.00	-0.14	0.87	0.04	0.00	-0.20	0.82	0.05	0.00
Sample Size	8,859				3,645				4,373			

[^10]TABLE 4: Cash Benefit Receipt

Two-parent families				Single-parent families			
Coef.	Hazard Ratio	SE	$P>\|z\|$	Coef.	Hazard Ratio	SE	$P>\|z\|$
1.07	2.93	0.40	0.01	0.71	2.04	0.29	0.01
0.95	2.58	0.22	0.00	0.52	1.69	0.18	0.00
0.48	1.61	0.28	0.09	0.23	1.25	0.26	0.38
-0.50	0.61	0.26	0.06	-0.09	0.91	0.26	0.72
-1.01	0.36	0.20	0.00		NA		
NA				-0.61	0.54	0.33	0.06
0.96	2.60	0.26	0.00	0.56	1.75	0.24	0.02
0.39	1.47	0.10	0.00	0.18	1.19	0.10	0.08
Omitted				Omitted			
0.82	2.26	0.19	0.00	0.61	1.85	0.14	0.00
-0.23	0.79	0.41	0.57	0.72	2.05	0.43	0.10
0.57	1.76	0.23	0.02	0.48	1.61	0.20	0.02
0.00	1.00	0.01	0.81	-0.04	0.96	0.01	0.00
-0.10	0.90	0.09	0.25	-0.03	0.97	0.08	0.75
0.27	1.31	0.17	0.11	0.06	1.06	0.17	0.71
0.39	1.47	0.31	0.21	0.33	1.39	0.43	0.44
0.19	1.21	0.06	0.00	0.17	1.19	0.06	0.01
20,417				6,928			

All families			
Coef.	Hazard Ratio	SE	$P>\|z\|$
0.90	2.45	0.23	0.00
0.66	1.94	0.13	0.00
0.29	1.33	0.16	0.07
-0.02	0.98	0.16	0.88
-1.09	0.34	0.11	0.00
-0.31	0.73	0.19	0.10
0.82	2.26	0.17	0.00
0.23	1.26	0.06	0.00
	$0 m i t t e d$		
0.67	1.96	0.10	0.00
-0.03	0.98	0.30	0.93
0.51	1.67	0.14	0.00
-0.02	0.98	0.01	0.02
-0.02	0.98	0.06	0.66
0.17	1.19	0.11	0.13
0.27	1.31	0.22	0.22
0.18	1.20	0.04	0.00
28,670			

Grandparent in household
Another adult relative in household
Adult non-relative in household

Parents are married
Parent has an unmarried partner
Household composition changes
Moves to new residence
Child is White alone
Child is Black alone

Sample Size

[^11]TABLE 5: Non-Cash Benefit Receipt

	All families				Two-parent families				Single-parent families			
	Coef.	Hazard Ratio	SE	$P>\|z\|$	Coef.	Hazard Ratio	SE	$P>\|z\|$	Coef.	Hazard Ratio	SE	$P>\|z\|$
Grandparent in household	0.56	1.75	0.21	0.01	0.59	1.80	0.25	0.02	0.35	1.42	0.40	0.38
Another adult relative in household	0.47	1.60	0.13	0.00	0.53	1.69	0.18	0.00	0.46	1.58	0.23	0.05
Adult non-relative in household	0.43	1.54	0.16	0.01	0.64	1.90	0.28	0.02	0.27	1.31	0.25	0.27
Parent is not the homeowner/renter	-0.28	0.75	0.17	0.10	-0.84	0.43	0.27	0.00	-0.25	0.78	0.31	0.43
Parents are married	-0.38	0.68	0.09	0.00	-0.62	0.54	0.17	0.00		NA		
Parent has an unmarried partner	0.13	1.14	0.18	0.47		NA			-0.11	0.90	0.34	0.75
Household composition changes	0.34	1.40	0.20	0.09	0.11	1.11	0.27	0.69	0.70	2.02	0.36	0.05
Moves to new residence	0.20	1.23	0.07	0.01	0.25	1.28	0.09	0.01	-0.08	0.92	0.16	0.62
Child is White alone		Omitte				Omitte				Omitte		
Child is Black alone	0.74	2.10	0.10	0.00	0.65	1.91	0.13	0.00	0.77	2.15	0.17	0.00
Child is Asian alone	0.13	1.14	0.16	0.41	0.15	1.16	0.16	0.36	-0.21	0.81	0.72	0.77
Child is none of the above	0.34	1.41	0.12	0.00	0.26	1.30	0.14	0.07	0.47	1.60	0.23	0.04
Child's age in years	-0.02	0.98	0.01	0.01	-0.01	0.99	0.01	0.33	-0.05	0.95	0.02	0.00
Child is female	-0.02	0.98	0.04	0.64	-0.04	0.96	0.05	0.41	0.09	1.10	0.10	0.35
Child is Hispanic	0.74	2.10	0.09	0.00	0.81	2.25	0.11	0.00	0.57	1.76	0.19	0.00
Child is native born	-0.43	0.65	0.12	0.00	-0.41	0.66	0.14	0.00	-0.30	0.74	0.39	0.45
Number of siblings in the household	0.10	1.11	0.03	0.00	0.11	1.11	0.03	0.00	0.05	1.05	0.09	0.61
Sample Size	15,525				13,002				2,099			

[^12]TABLE 6: Exit Cash Benefit Receipt

 Grandparent in household
Another adult relative in household
Adult non-relative in household
 Parents are married
Parent has an unmarried partner
Household composition changes Moves to new residence

> Child is White alone Child is Black alone Child is Asian alone Child's age in years Child is female chis is Hispanic Child is native born
Sample Size
Number of siblings in the household

[^13]TABLE 7: Exit Non-Cash Benefit Receipt

	All families				Two-parent families				Single-parent families			
	Coef.	Hazard Ratio	SE	$P>\|z\|$	Coef.	Hazard Ratio	SE	$P>\|z\|$	Coef.	Hazard Ratio	SE	$P>\|z\|$
Grandparent in household	-0.47	0.63	0.27	0.08	-0.68	0.51	0.38	0.08	-0.21	0.81	0.38	0.58
Another adult relative in household	-0.18	0.83	0.12	0.12	-0.10	0.90	0.17	0.54	0.03	1.03	0.19	0.88
Adult non-relative in household	0.02	1.02	0.14	0.86	-0.04	0.96	0.24	0.88	-0.09	0.92	0.23	0.70
Parent is not the homeowner/renter	0.05	1.05	0.15	0.74	-0.12	0.89	0.29	0.68	0.08	1.09	0.27	0.76
Parents are married	0.84	2.32	0.08	0.00	0.45	1.57	0.13	0.00		NA		
Parent has an unmarried partner	0.32	1.38	0.13	0.02		NA			0.50	1.64	0.30	0.09
Household composition changes	-0.02	0.98	0.18	0.89	-0.13	0.88	0.26	0.61	0.13	1.13	0.30	0.68
Moves to new residence	0.02	1.02	0.06	0.76	0.04	1.04	0.08	0.65	-0.07	0.93	0.10	0.44
Child is White alone		Omitte				Omitte				Omitt		
Child is Black alone	-0.58	0.56	0.09	0.00	-0.28	0.76	0.13	0.03	-0.84	0.43	0.15	0.00
Child is Asian alone	-0.19	0.83	0.18	0.30	-0.09	0.91	0.20	0.63	-0.41	0.66	0.47	0.39
Child is none of the above	-0.41	0.67	0.12	0.00	-0.37	0.69	0.17	0.03	-0.55	0.58	0.21	0.01
Child's age in years	0.00	1.00	0.01	0.91	0.00	1.00	0.01	0.68	0.00	1.00	0.01	0.70
Child is female	0.01	1.01	0.04	0.78	-0.02	0.98	0.06	0.78	0.07	1.07	0.09	0.43
Child is Hispanic	-0.64	0.53	0.09	0.00	-0.70	0.50	0.10	0.00	-0.62	0.54	0.18	0.00
Child is native born	0.05	1.05	0.14	0.73	0.02	1.02	0.16	0.89	-0.12	0.89	0.34	0.72
Number of siblings in the household	-0.29	0.75	0.04	0.00	-0.28	0.76	0.04	0.00	-0.34	0.71	0.07	0.00
Sample Size	16,618				8,488				6,707			
NOTE: Models also control for time of last observation, the presence of anyone in the household for whom the relationship to the child is unavailable, and are clustered by the household ID in order to control for the interrelatedness of observations from siblings. Models are unweighted, and therefore are not representative of the US population as a whole. Standard errors are adjusted for the design effect, which adjusts for the complex sample design.												

WORKS CITED

Amato, P. (2005). "The Impact of Family Formation Change on the Cognitive, Social, and Emotional Weil-Being of the Next Generation." Future of Children 15:75-96.

Angel, R., Tienda, M. (1982). Determinants of Extended Household Structure: Cultural Pattern or Economic Need? American Journal of Sociology, 87(6): 1360-1383.

Bengtson, V.L. (2001). Beyond the Nuclear Family: The Increasing Importance of Multigenerational Bonds. Journal of Marriage and Family, 63, 1-16.

Brandon, P.D. (2000). "Welfare Entries among Children Living with Grandparents." Working Paper no. 170. Northwestern University and the University of Chicago, Joint Center for Poverty Research, Chicago.

Bumpass, L.L., Raley, R.K. (1995). "Redefining Single-Parent Families: Cohabitation and Changing Family Reality." Demography, 32(1): 97-109.

Cox, A.G., Pebley, A.R. (1999). "Grandparent Care and Welfare: Assessing the Impact of Public Policy on Split and Three Generation Families." Labor and Population Program Working Paper Series 99-08. RAND, Washington, DC.

Edin, K., Kefalas, M. (2005). Promises I Can Keep: Why Poor Women Put Motherhood Before Marriage. University of California Press: Berkley, CA.

Edin, K., Lein, L. (1997). Making Ends Meet: How Single Mothers Survive Welfare and Low-Wage Work. Russell Sage Foundation: New York, NY.

England, P., Edin, K., Eds. (2009). Unmarried Couples with Children. Russell Sage Foundation: New York, NY.

Eggebeen, D.J., Hogan, D.P. (1990). Giving Between Generations in American Families. Human Nature, 1, 211-232.

Fields, J. (2003). Children's Living Arrangements and Characteristics: March 2002. Current Population Reports, P20-547. U.S. Census Bureau, Washington, DC.

Henley, J.R., Danzinger, S.K., Offer, S. (2005). The Contribution of Social Support to the Material Well-Being of Low-Income Families. Journal of Marriage and Family, 67, 122-140.

Hogan, D.P., Eggebeen, D.J., Clogg, C.C. (1993). The Structure of Intergenerational Exchanges in American Families. American Journal of Sociology, 98, 1428-1458.

Jackson, A.P. (1998). The Role of Social Support in Parenting for Low-Income, Single, Black Mothers. Social Service Review, 72, 365-378.

Kisker, E.E. \& Ross, C.M. (1997). Arranging Child Care. Future of Children, 7, 99-109.
Kreider, R.M. \& Ellis, R. (2011). "Living Arrangements of Children: 2009," Current Population Reports, P70-126, U.S. Census Bureau, Washington, DC.

Lee, Y., Aytac, I.A. (1998). Intergenerational Financial Support among Whites, African Americans, and Latinos. Journal of Marriage and Family, 60(2), 426-441.

McLanahan, S. and Sandefur, G. (1994). Growing Up With A Single Parent: What Hurts, What Helps. Harvard University Press: Cambridge, MA.

Stack, C. (1974). All our kin: Survival strategies. Harper Torchback: New York, NY.
Stewart, S.D. (2006). Brave New Stepfamilies: Diverse Paths Toward Stepfamily Living. Sage Publications: New York, NY.

[^0]: ${ }^{1}$ Any views expressed are those of the author(s) and not necessarily those of the U.S. Census Bureau.

[^1]: ${ }^{2}$ For additional information about statistical uncertainty for analyses using this data, see http://www.census.gov/sipp/sourceac/S\&A04 W1toW12(S\&A-9).pdf.
 ${ }^{3}$ The 2004 Panel of the SIPP sample is located in 351 Primary Sampling Units (PSUs), each consisting of a county or a group of contiguous counties. Of these 351 PSUs, 123 are self-representing (SR) and 228 are non-self-representing (NSR). SR PSUs have a probability of selection of one. NSR PSUs have a probability of selection of less than one. Within PSUs, housing units (HUs) were systematically selected from the master address file (MAF) used for the 2000 decennial census. To account for HUs built within each of the sample areas after the 2000 census, a sample containing clusters of four HUs was drawn from permits issued for construction of residential HUs up until shortly before the beginning of the panel. In jurisdictions that don't issue building permits or have incomplete addresses, we systematically sampled expected clusters of four HUs which were then listed by field personnel.
 ${ }^{4}$ Based on these follow-up criteria, FRs were able to interview about 40,600 HUs of the approximately 44,200 eligible HUs for Wave 2, about 39,100 HUs of the approximately 44,600 eligible HUs for Wave 3, about 38,300 HUs of the approximately 44,900 eligible HUs for Wave 4, about 37,400 HUs of the approximately 45,400 eligible HUs for Wave 5, about 36,900 HUs of the approximately 45,600 eligible HUs for Wave 6, about 36,300 HUs of the approximately 45,700 eligible HUs for Wave 7, and about 36,000 HUs of the approximately 45,700 eligible HUs for Wave 8.

[^2]: ${ }^{5}$ The rates of non-interviewed housing units due to direct or indirect refusal were 6.6% for Wave $2,9.9 \%$ for Wave $3,11.6 \%$ for Wave $4,13.7 \%$ for Wave $5,15.0 \%$ for Wave $6,16.1 \%$ for Wave 7 , and 16.1% for Wave 8. The rates of non-interviewed HUs due to moving to an unknown address were 1.4% for Wave $2,2.5 \%$ for Wave 3, 3.1% for Wave 4, 3.7\% for Wave 5, 4.1% for Wave 6, 4.5% for Wave 7, and 5.2% for Wave 8. ${ }^{6}$ After the sample cut, the rates of non-interviewed housing units due to direct or indirect refusal were 16.9% for Wave $9,18.5 \%$ for Wave $10,19.7 \%$ for Wave 11 , and 18.9% for Wave 12 . The rates of non-interviewed HUs due to moving to an unknown address after the sample cut were 5.2% for Wave $9,5.3 \%$ for Wave 10, 5.7% for Wave 11, and 6.4% for Wave 12.
 ${ }^{7}$ For information on statistical uncertainty see <www.census.gov/sipp/sourceac/S\&A04_W1toW12(S\&A9).pdf>.
 ${ }^{8}$ The Census Bureau defines individuals over 15 as adults in the SIPP.

[^3]: ${ }^{9}$ Children under the age of 15 are not actually interviewed directly in the SIPP; instead, responses for them are gathered from a knowledgeable adult, usually the child's mother.
 ${ }^{10}$ Notably, the Census Bureau also assigns individuals married to a child's parent into the other parent pointer. This is done regardless of whether the respondent in question would consider themselves to be any type of parent to the child in question. However, existing research suggests that there are very few married parent couples in which the non-biological parent doesn't make any parental claim to their spouses children with whom they live (see Stewart, 2006, for a discussion), so this assumption seems warranted.

[^4]: ${ }^{11}$ Unrelated adults are modeled independently of the non-parent unmarried partner of a child's parent; that is, unrelated adults who are the partner of the parent are counted as partner, and not as an unrelated adult, and viceversa.
 ${ }^{12}$ Only included in "single" parent models, and therefore includes only partners who are not identified as a parent or parent figure to the child.

[^5]: ${ }^{13}$ Included only in two-parent models. Notably, if parents are married, then the instrument defaults the child into having two parent pointers, so partnered single parent households are never married parent households.

[^6]: ${ }^{14}$ Means-tested cash benefits include Temporary Assistance to Needy Families (TANF), Supplemental Security Income (SSI), General Assistance, other welfare assistance, food assistance, clothing assistance and short-term cash assistance.
 ${ }^{15}$ Non-cash benefits include Food Stamps, WIC, Medicaid, rent for public housing, lower rent due to government subsidy, government energy assistance, free or reduced-price school lunches, and free or reduced-price school breakfasts.

[^7]: ${ }^{16}$ Data are subject to error arising from a variety of sources, including sampling and nonsampling error. For information or these sources of error see <www.census.gov/sipp/sourceac/S\&A04_W1toW12(S\&A-9).pdf>. ${ }^{17}$ The same table was replicated for the comparison of the means for the sample of observations used to the weighted sample available at Wave 2 ; there were no statistically significant differences.
 ${ }^{18}$ All comparative statements in this report have undergone statistical testing, and, unless otherwise noted, all comparisons are statistically significant at the 10 percent significance level.

[^8]: NOTES:
 (1) Two-parent families are defined as families in which the child has BOTH a mother (biological, step, or adoptive) and a father (biological, step, or adoptive) at the time the child is first observed in the panel. A two-parent family is determined regardless of whether or not the parents are married.
 (2) Single-parent families are defined as families in which the child has EITHER a mother (biological, step, or adoptive) and a father (biological, step, or adoptive) at the time the child is first observed in the panel. Some of these "single -parent" families also include a parent's partner. However, the presence of a parent's partner is irrelevant to a single -parent or two-parent distinction if the parent does not indicate that the partner holds a parental role with regard to a child.

[^9]: NOTE: Models also control for time of last observation, the presence of anyone in the household for whom the relationship to the child is unavailable, and are clustered by the household ID in order to control for the interrelatedness of observations from siblings. Models are unweighted, and therefore are not representative of the US population as a whole. Standard errors are adjusted for the design effect, which adjusts for the complex sample design.

[^10]: NOTE: Models also control for time of last observation, the presence of anyone in the household for whom the relationship to the child is unavailable, and are
 clustered by the household ID in order to control for the interrelatedness of observations from siblings. Models are unweighted, and therefore are not representative of the US population as a whole. Standard errors are adjusted for the design effect, which adjusts for the complex sample design.

[^11]: NOTE: Models also control fortime of last observation, the presence of anyone in the household for whom the relationship to the child is unavailable, and are clustered by the household ID in order to control for the interrelatedness of observations from siblings. Models are unweighted, and therefore are not representative of the US population as a whole. Standard errors are adjusted for the design effect, which adjusts for the complex sample design.

[^12]: NOTE: Models also control for time of last observation, the presence of anyone in the household for whom the relationship to the child is unavailable, and are
 of the US population as a whole. Standard errors are adjusted for the design effect, which adjusts for the complex sample design.

[^13]: NOTE: Models also control for time of last observation, the presence of anyone in the household for whom the relationship to the child is unavailable, and are clustered by the household ID in order to control for the interrelatedness of observations from siblings. Models are unweighted, and therefore are not representative of the US population as a whole. Standard errors are adjusted for the design effect, which adjusts for the complex sample design.

