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Introduction 

For well over a century, social scientists who strive to understand the temporal variation in the 

long run have attempted to separate age effects from period and cohort effects on a variety of social 

phenomena such as mortality, disease rate, family structure, social mobility, and inequality (Manson, 

Manson, Winsborough, and Poole 1973, Holford 1983, O’Brien 2000, Winship and Harding 2008, Fu 

2000). Whereas age effects represent the variation associated with growing old and is considered to 

reflect the developmental nature over one’s life course, cohort and period represent the social aspects 

that shape the temporal patterns of these phenomena. Specifically, period effects refer to the effects 

that are due to social and historical shifts such as economic recessions and prevalent unemployment, 

and are applied to all age groups simultaneously. Cohort effects are defined as the formative effects of 

social events on individuals at a specific period during their life course (Ryder 1965). Age-Period-Cohort 

(APC) models where the three variables are simultaneously considered in a statistical equation have 

been the conventional framework for quantifying age, period, and cohort effects. Unfortunately, 

statistical APC models suffer from identification problem: once the knowledge about any two of the 

three variables is available, the value for the third one is determined, that is, Cohort = Period – Age. 

Because of the exact linear dependency between age, period, and cohort, APC models are inestimable, 

so there are no unique estimates of the “distinct” effects of the three variables. 

Many researchers consider the interrelationship between age, period, and cohort an intriguing 

methodological challenge and have developed various methods to deal with the identification problem 

inherent in APC models. A large body of literature going back to the 1970s has examined the estimation 

problem inherent in the APC model. Manson, Manson, Winsborough, and Poole (1973) introduced the 

APC multiple classification model and suggested the Constrained Generalized Linear Model (CGLM) as a 

means of estimating the linear effects of age, period, and cohort. While this method has been used as a 

general solution to the APC problem, it has been criticized as being sensitive to the choice of constraints 
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(Glenn 1976, Rodgers 1982a, 1982b). Recently, Fu (2000) and Yang, Fu and Land (2004) proposed a new 

method for distinguishing the age, period, and cohort effects. They applied the Moore-Penrose 

generalized inverse to statistical modeling of APC effects, termed the resulting method the Intrinsic 

Estimator (IE), and suggested it as an all-purpose solution to the APC conundrum with potentially wide 

application in the social sciences. On the one hand, although the authors did not claim that their method 

is a general solution to the identification problem in APC analysis, this method has been hailed 

(Schwadel 2011, Huang, Yue, and Yang 2008, Smith 2004) because it appears to have fewer assumptions 

and to produce less biased estimates than the conventional CGLM. On the other hand, Winship and 

Harding (2008) and Harding (2009) noted that this highly technical solution has not been rigorously 

examined with statistical and sociological theories, so it is still undetermined whether the IE approach 

provides a general solution to the APC problem. Based on Kupper, Janis, Karmous, and Greenberg’s work, 

O’Brien (2011a) provided insights into the constraint that IE assumes and showed that the IE is not an 

unbiased estimator of the underlying, true age, period, and cohort effects. Yet scholars disagree about 

what exactly the IE constraint is and how this constraint affects estimation in real-world research (Fu, 

Land, and Yang 2011, O’Brien 2011b). Moreover, important statistical properties such as unbiasedness 

and consistency of the IE method have not been examined with simulation experiments that 

demonstrate how it performed in various circumstances, nor have the implications of the constraint that 

IE imposes and its application scopes for empirical research been fully understood.  

The objective of this paper is to better understand the statistical properties of the IE technique 

and its implications for empirical research by making explicit the assumption that IE imposes implicitly. 

In this paper, I will identify the constraint that IE imposes on parameter estimation with mathematical 

derivations, reveal the non-trivial implications of this constraint for empirical APC analysis, and examine 

the validity of IE using simulation methods. Specifically, I will discuss the following statistical features 

and properties of the IE estimator: 
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(1) Constraint: What is the constraint that IE imposes given that “the IE may in fact also be viewed 

as a constrained estimator” (Yang et al. 2008, p 1706)? In other words, what are the specific 

forms of the IE constraint for data sets with varying numbers of age, period, and cohort groups?    

(2) The implication of this constraint with respect to:  

a. Unbiasedness: Is the expectation of IE the “true” age, period, and cohort effects being 

estimated? In statistical terms, does the equation ������ � ��	
� hold? If not, does the 

biased IE estimates correctly reflected the trend of age, period, and cohort?  

b. Consistency: Does the IE estimator converge to the “true” effects when age, period, and 

cohort are all of interest? In other words, as the sample size increases, does IE get closer 

and closer to the “true” value?  

c. Application scope: Fu and associates (2011) suggested that “the important statistical 

issue about APC modeling is how to identify the trend that helps to resolve the real-

world problem for a given APC data set” (p 3). Compared to CGLM, does IE yield better, 

if not unbiased, estimates to recover the age, period, and cohort patterns that may be 

observed in empirical research? 

Beyond the assessment of the IE technique, I also attempt to extend the discussion to the APC 

problem in general. Indeed, the APC problem belongs to a class of analyses where the predictors are 

exactly linearly dependent. Another example is the analysis of social mobility that attempts to 

distinguish the effects on an outcome of interest of origin socioeconomic status (SES), destination SES, 

and the discrepancy between them. Another sociological example is estimation of the effects on 

marriage duration of husband’s education, wife’s education, and the educational difference between 

them. Examples in other disciplines include analysis of the effects on economic growth of market 

supplies, consumers’ needs, and the gap in between, and that of the effects on earnings of current age, 

age at labor force entry, and years in labor force. In each of these cases, the value of any one of three 
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variables is completely determined by the other two. These studies are common and share similar 

theoretical problems. By pointing out the theoretical and logical problems of separating the effects of 

age, period, and cohort, this paper will make theoretical and methodological contributions to the 

literatures of related disciplines.   

The Identification Problem 

Although researchers are generally aware of the identification problem from a statistical perspective, 

the conceptual aspect that underlies this challenge and its implication for real-world research have not 

been emphasized. Thus to understand the nature of statistical methods for APC models including IE, I 

will first explicate the identification problem inherent in APC analysis that the IE estimator is intended to 

address. 

Table 1 presents a set of tabulated data that are frequently used in APC analysis (Mason et al. 

1973, Rogers 1982a, Glenn 2005, Yang et al. 2008). This table is a rectangular array of U.S. male 

mortality rates from 1970 through 2004 as measures of the outcome. The rows are defined by age 

intervals, columns defined by time periods, and the diagonals represent birth cohorts.  

[Table 1 about here]1 

Age, period, and cohort effects are confounded in the tabulated data. For example, the 

mortality rate in 1995-99 for the 40-44 age group was 329 per 100,000 males in the U.S. population, a 

death rate that also corresponds to the cohort who were born in 1950-54 and became 40-44 years old in 

1995-99. Similarly, the mortality rate in 1970-74 for the same age group was 461 per 100,000 in the 

America’s male population, which also corresponds to the birth cohort of 1930-34.  

                                                           
1 Source: The Berkeley Human Mortality Database (http://www.mortality.org).  

http://www.mortality.org/
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Researchers have conventionally used the Analysis of Variance (ANOVA) model below where the 

three time-related variables are included as independent entities to separate age, period, and cohort 

effects: 

                                                          ����
���� � � � �� � �� � ��,                                                                    (1)                                                                                     

for age groups � � 1,2, … , � , periods � � 1,2, … , � , and cohorts � � 1,2, … , �� � � � 1� , where 

∑ �� �!
�"# ∑ �� �$

�"# ∑ �� � 0!&$'#
�"# . E(Yij) denotes the expected value of the outcome of interest Y for 

the ith age group in the jth period of time; g is the “link function” in the language of generalized linear 

models; αi denotes the mean difference from the global mean μ associated with the ith age category; ϐj 

denotes the mean difference from μ associated with the jth period; γk denotes the mean difference due 

to the membership of the kth cohort. The usual ANOVA constraint applies where the sum of coefficients 

for each effect is set to zero.  

For a normally distributed outcome Yij, the ANOVA model above can also be written in a generic 

regression fashion: 

                                                                                  
 � (� � ),                                                                            (2) 

where Y is a vector of outcomes; X is the design matrix consisting of an intercept and categorical 

variables indexing respondents’ age, period, and cohort group; b denotes a parameter vector whose 

elements correspond to the effects of a given age, cohort, or period group; and ε denotes random errors 

with a certain distribution. Then the estimated age, period, and cohort effects can be obtained using the 

ordinary least squares (OLS) method: 

                                                                              �* � �(+(�'#(+
                                                                     (3) 

This approach has been strenuously challenged because age, period, and cohort are exactly 

linearly related, that is, Cohort = Period – Age. Specifically, in the APC model above, when age, period, 

and cohort are all of potential interest, the inverse of the matrix �X-X�'# does not exist because of the 

age-period-cohort linear dependency, and thus the parameter vector b is inestimable. This is the so-
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called identification problem in APC analysis. One serious consequence is that no unique set of 

coefficients can be obtained because there are an infinite number of solutions, and the fits to the data 

from these solutions are all identical.  

This identification problem can be shown more explicitly. For simplicity, suppose the data we 

have are perfect, without random error or measurement error; then the problem is mathematical rather 

than statistical and the regression model is: 

                                                                                        
 � (�.                                                                        (4) 

Due to the linear dependency between age, period, and cohort, there exists a nonzero vector b0, a linear 

function of the design matrix X, such that the product of the design matrix and the vector equals zero: 

                                                                                       (�. � 0.                                                                        (5) 

In other words, b0 represents the null space of the design matrix X, which has dimension equal to one. It 

follows that the parameter b can be decomposed into components in two orthogonal subspaces: 

                                                                                  � � �# � / · �.,                                                                 (6) 

where s is an arbitrary real number corresponding to a specific solution to equation (3), and b1 is a linear 

function of the parameter vector b, corresponding to the projection of b on the non-null space of the 

design matrix X, orthogonal to the null space. 

Given equations (4) and (6), the following equation must hold: 

                                                           
 � (� � (��# � / · �.� � (�# � / · (�..                                        (7) 

But (�. � 0 and thus / · (�. � 0, so equation (7) is true for all values of s. That is, s can be any 

arbitrary real number, and each value of s corresponds to a specific solution to equation (4). Therefore, 

an infinite number of possible solutions for b exist, and it is impossible to find a unique solution without 

additional constraints on b. To illustrate, I use an example with three age groups, three periods, and five 

cohorts and suppose that error is zero for ease of presentation (and without loss of generality). Table 2 

presents three different parameter vectors �+ � 23, �#, �4, �#, �4, �#, �4, �5, �6, �78 arising from three 
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different values of s, namely 0, 2, and 10. In Figure 1a the observed value in each cell is represented in 

terms of the unknown parameters αi, ϐj, and γk from model (1) for � � 1, 2, 3;  � � 1, 2, 3;  � � 1, 2, … , 5. 

Figure 1b presents the fitted values based on Table 2’s three different bTs in the same tabular form as 

Figure 1a. Note that the three sets of fitted values are identical although the parameter vectors are not 

the same. Taken collectively, Table 2 and Figure 1 demonstrate that for a single data set, an infinite 

number of possible solutions for the age, period, and cohort effects exist, and each solution corresponds 

to a specific value of s. Therefore, any possible solution, or alternatively, none of these solutions, can be 

viewed as reflecting the “true” effects of age, period, and cohort even though different values of s gives 

radically different age and period effects. 

[Table 2 about here] 

[Figure 1 about here] 

In social science research, real data inevitably contain random as well as measurement errors so 

researchers will not have the same perfect fit as in the idealized data above, but the identification 

problem remains: no unique set of coefficient estimates can be obtained when the predictor variables 

are perfectly linearly dependent, nor can any set of these coefficients be interpreted as reflecting the 

“true” effects. I argue that the identification problem is not methodological or statistical in nature; 

rather, it reflects a fundamental problem in theoretical thinking and logical reasoning. I will address this 

argument further in the discussion section. Now I will consider the IE and other solutions to the 

identification problem based on imposing a constraint on b. 

The Constraint Approach 

The CGLM and the IE 

A large body of literature in sociology, demography, and epidemiology dating back to the 1970s has 

been devoted to statistically distinguishing the effects of age, period, and cohort. Mason et al. (1973) 
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explicated the “identification problem” in cohort analysis and set forth the Constrained Generalized 

Linear Model (CGLM), a coefficient-constrained method that has been used as a conventional approach 

to the identification problem in APC analysis. This method places (at least) one identifying restriction on 

the parameter vector b in equation (2). Usually the effects of the first two age groups, periods, or 

cohorts are constrained to be equal. With this one additional constraint, the APC model becomes just-

identified, and the least squares and maximum likelihood estimators exist. The theoretical foundation of 

CGLM is to use external, extra information to make APC models estimable.  

The CGLM approach has been criticized for relying on external or side information to find 

constraints when such information often does not exist or cannot easily be verified. In addition, 

different choices of identifying constraints can produce widely different estimates of patterns of change 

across the age, period, and cohort categories. That is, estimates of the model effect coefficients are 

quite sensitive to the choice of the equality coefficient constraint (Rodgers 1982a, Glenn 2005).   

Recent publications on cohort analysis authored by Fu (2000, 2006) and Yang, Fu and Land (2004) 

derived a new APC estimator, called the Intrinsic Estimator (IE), based on methodological developments 

in biostatistics. It turns out that the IE implicitly imposes a constraint on b, like CGLM. This assumption is 

easy to overlook at least in part because on the surface the assumption necessary to apply the 

technique seem technical and remote. Although the assumption is, to some extent, recognized by the 

authors (see Yang et al. 2008, p 1706), the meaning and implications of this assumption have not been 

properly understood. As I will illustrate, this obscure assumption can have major effects on the 

coefficient estimates of the APC model. Specifically, I will explain the meaning of the IE assumption and 

its non-trivial implications, and then examine how IE performs in various circumstances with 

mathematical derivatives and simulation experiments.  
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The Constraint Imposed by the IE Method 

IE is an application of the Moore-Penrose Generalized Inverse2 to the APC problem. It can also 

be viewed as an extension of Principal Component (PC) Analysis, a multi-purpose technique that can be 

used to deal with identification problems when explanatory variables are highly correlated. By 

transforming correlated explanatory variables to a set of orthogonal linear combinations of these 

variables, called principal components, PC analysis is a useful tool to reduce data redundancy and to 

develop predictive models.  

In contrast, the goal of IE is neither data reduction nor prediction, but estimation of the effects 

of, and capturing the general trend of, age, period, and cohort. The computational algorithm of IE 

includes five steps: (1) transform the design matrix X to the PC space using its eigenvector matrix; (2) in 

the PC space, identify the “null eigenvector” – the special eigenvector that corresponds to an eigenvalue 

of zero – and the corresponding null subspace (with one dimension) and non-null subspace (with m-1 

dimensions, where m denotes the number of coefficients to be estimated); (3) in the non-null subspace 

of m-1 dimensions, regress the outcome of interest using OLS or maximum likelihood (ML) on the m-1 

PCs to obtain m-1 coefficient estimates; (4) extend the m-1 coefficient vector to the whole PC space of 

dimension m by adding an element corresponding to the null eigenvector direction and arbitrarily 

setting its coefficient to zero; and (5) use the eigenvector matrix to transform the extended coefficient 

vector estimated in the PC space, including the added zero element, back to the original age-period-

cohort space to obtain estimates for age, period, and cohort effects (see Yang et al. 2004, Yang 2008).  

The fourth step, “extend the m-1 coefficient vector to the whole PC space of dimension m by 

adding an element corresponding to the null eigenvector direction and arbitrarily setting its coefficient 

to zero,” carries the key assumption of the IE approach to APC analysis. This assumption has implicit yet 

                                                           
2 See, e.g., Searle (1971, p 16-19) for definition and properties. 
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enormous implications for the validity and application of the IE approach. Specifically, setting the 

“coefficient of the null eigenvector”, s, to zero is equivalent to assuming 

                                                                � · �. � 0,                                                                     (8) 

i.e., the projection of b on b0 is zero, where b and b0 were defined in equation (6). Kupper et al. (1985) 

provided a closed-form representation for the eigenvector bo. When the responses are in the order by 

row, then3 

                                                                          �. � �0, <, =, >�+ ,                                                            (9) 

where 

                                                           < � �1 � #&!
4

, … , �� � 1� � #&!
4

� 

                                                           = � �#&$
4

� 1, … , #&$
4

� �� � 1�� 

                                                           > � �1 � !&$
4

, … , �� � � � 2� � !&$
4

�. 

For example, when a=3 and p=3, that is, for three age categories and three time periods, bo is: 

                                                               �. � �0, �1,0,1,0, �2, �1,0,1�+ ,                                                (10) 

where < � ��1,0�, = � �1,0�, and > � ��2, �1, 0,1�. Suppose that age, period, and cohort each has 

effects on the outcome of interest that show a linear trend. Denote these trends as ka, kp, kc, 

respectively, the intercepts for the three variables as ia, ip, and ic, and the overall mean as u. Thus the 

effects associated with the three age categories are �!, �! � �!, and �! � 2 · �!, respectively. Similarly, 

the effects related to the three time periods are �$, �$ � �$, and �$ � 2 · �$, respectively. For the five 

cohort groups, the effects are �?, �? � �?, �? � 2 · �?, �? � 3 · �?, and �? � 4 · �?, respectively. Then the 

parameter vector, b, can be written as: 

                                           � � �3, �! , �! � �!, �$, �$ � �$, �? , �? � �? , �? � 2 · �? , �? � 3 · �?�+,            (11) 

                                                           
3 Yang et al. (2004, 2008) use �.

A � BC
DBCD

, where D�.D is the length of b0 so �.
A has a length of 1. b0 is used in this 

paper because it doesn’t differ from �.
A in nature and is simpler for computation.  
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where the last category of each variable is omitted as the reference group. According to the constraint 

for age effects in model (1), we know that  

                                               ∑ �� �!
�"# �! � ��! � �!� � ��! � 2 · �!� � 3 · �! � 3 · �! � 0,               (12) 

which is equivalent to  

                                                                                    �! � ��!.                                                                         (13) 

Similarly, it can be shown using the constraint for period and cohort effects in model (1) that  

                                                                                    �$ � ��$,                                                                         (14) 

and 

                                                                                  �? � �2 · �?.                                                                       (15) 

Using on equations (13), (14), and (15), equation (11) can be simplified as: 

                                                        � � �3, ��! , 0, ��$, 0, �2 · �? , ��? , 0, �?�+.                                         (16) 

Since the constraint that IE implicitly imposes is � · �. � 0, according to equations (10) and (16), the 

specific form of its assumption for APC data with three age categories, three time periods, and five 

cohort groups are 

� · �. � 3 · 0 � ���!� · ��1� � 0 · 0 � 2��$8 · 1 � 0 · 0 � ��2 · �?� · ��2� � ���?� · ��1� � 0 · 0 � 

                                            �? · 1 � �! � 0 � �$ � 0 � 4 · �? � �? � �? � �! � �$ � 6 · �?.               (17)    

To illustrate the implications of this implicit constraint, I simulate normally distributed data sets 

as follows. For those at age i in period j, the mean response variable is 10 � �! · ��F� � �$ · �FG�HI� �

�? · JHKHGL�� and the standard deviation equals 0.1. The number of age and period groups fixed at three 

each. I consider three sets of true ka, kp, kc, and for each selection of true ka, kp, kc, I simulated 1,000 such 

data sets by drawing random errors. As shown in Table 3, for the first set of true ka, kp, kc, the age effects 

for the three age categories are -1, 0, and 1, respectively, so ka, the linear trend in age effects, equals 1. 

The period effects in the same dataset are -7, 0, and 7 respectively, so kp is 7. Similarly, since the cohort 

effects for -2, -1, 0, 1, and 2, respectively, kc is 1. Note that for this data set, 
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                                                �! � �$ � 6 · �? � 1 � 7 � 6 · 1 � 0 ,                                       (18)    

i.e., the relationship between the linear trend in the age, period, and cohort effects satisfies equation 

(17), the constraint implicit in IE. For the other two sets of true ka, kp, kc in Table 3, however, equation 

(17) does not hold. Specifically, for the second set, ka=1, kp=7, and kc=10, so 

                                                �! � �$ � 6 · �? � 1 � 7 � 6 · 10 � 54 O 0;                            (19)   

And for the third set, ka=3, kp=1, and kc=4, so: 

                                                �! � �$ � 6 · �? � 3 � 1 � 6 · 4 � 26 O 0.                               (20)   

[Table 3 about here] 

Figure 2 presents the IE estimates for the three sets of true ka, kp, kc, averaged over the 1,000 

simulated data sets, along with the “true” effects graphically. The bias of IE is estimated by the 

difference between the truth and the IE estimates, averaged over the 1,000 data sets. In Figure 2a, IE 

yields good estimates for the first true ka, kp, kc because equation (17) holds. In contrast, as shown in 

Figure 2b and 2c, IE returns poor estimates that are vastly different from the “true” effects for the 

second and third sets of true ka, kp, kc, because theses true effects do not satisfy IE’s constraint.  

[Figure 2 about here] 

In fact, for any coefficient-constraint approach such as CGLM and IE, “the choice of constraint is 

the crucial determinant of the accuracy in the estimated age, period, and cohort effects” (Kupper et al. 

1985, p 822). Since the constraint assumption largely affects estimation results, no matter what 

constraint a statistical method assumes, it produces accurate estimates only when its assumptions 

approximate the true structure of the data at hand. It follows that when there are three age groups, 

three periods, and five cohorts, only when the linear effects of age, period, and cohort satisfy equation 

(17) can IE yields accurate estimates. However, in APC analysis researchers usually have no a priori 

knowledge about structure of age, period, cohort effects. IE, therefore, unfortunately has extremely 
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limited application and researchers will not know what datasets it can be applied to. Thus it is no better 

than CGLM in this respect. 

More importantly, the statistical exposition above indicates that the constraint that IE assumes 

also depends on the design matrix X, i.e., on the number of age, period, and cohort groups. For example, 

if we add one age group to our example, so we now have four age groups, three periods, and six cohorts, 

and the IE constraint is 

                                                � · �. � 11 · �! � 4 · �$ � 45 · �? � 0.                                          (21)    

Compared to equation (17) for the case of three age groups, three periods, and five cohorts, equation 

(21) shows that adding an age group dramatically changes the constraint. Readers can verify that adding 

to or reducing the number of periods or cohorts will also greatly alter the constraint that the IE implicitly 

assumes.  

These examples demonstrate that not only does IE rely on a constraint like the CGLM method 

does, but also unlike CGLM, where the constraint (e.g., equal age effects for the first two age groups) is 

explicit and based on theoretical account or side information, the constraint of IE is implicit and varies 

depending on the number of age, period, and cohort groups. Although the constraint that the IE 

technique assumes has been described as minimum (Schwadel 2011, Yang et al. 2008), in fact the 

assumption is so exquisitely precise that a slight inconsistency between the assumption and the reality 

or a small increase or decrease in the number of age, period, and cohort categories can have a 

tremendous impact on parameter estimation. This instability of IE’s implicit constraint further limits the 

application of IE for analyzing data in combination with lack of a priori or side information about the age, 

period, and cohort effects. 

In statistical theory, the limitation of the IE approach results from a misinterpretation of the 

constraint that IE imposes on parameter estimation. It is true that b0, the null eigenvector, is determined 

by the design matrix, but it is incorrect to assume that therefore b0 “is independent of the response 
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variable Y” or “it should not play any role in the estimation of effect coefficient” (Yang et al. 2008, p 

1705). Rather, both the null eigenvector and non-null eigenvectors (whose eigenvalues are nonzero) are 

determined by the design matrix, that is, by the number of age categories, time periods, and birth 

cohorts. To this extent, it is no less likely that the data contains a significant component in the b0 

direction than in the directions of the non-null eigenvectors. The fact that s, the coefficient for b0, can be 

an arbitrary real number simply tells us that variation in the direction of b0 is not estimable. If the data 

have variation in this direction, the IE method will mistakenly attribute that variation to (linear functions 

of) other columns in the design matrix, resulting in significant errors in estimation.  

The Implications of the IE Constraint 

Biasedness 

By definition, an estimator δ is an unbiased estimator of a parameter ϐ if the expectation of δ over the 

distribution that depends on ϐ is equal to ϐ, or �P�Q� � R. If IE is an unbiased estimator, the expected 

value of IE must be the true age, period, and cohort effects. The following mathematical computation 

shows, however, that the expectation of the IE estimator is not the true effects. 

As noted in the section above, the key computation of IE is to extend the coefficient vector in 

the PC space                      

                                                                ��S�+ � ��.
S , �#

S , �4
S , … , �T'#

S �                                                    (22) 

by adding a zero element such that 

                                                               ��U�V
S �+ � ��.

S , �#
S , �4

S , … , �T'#
S , 0�.                                            (23) 

In the context of the foregoing discussion of the identification problem, the �U�V
S  corresponds to the 

projection of the coefficient vector b in the non-null space, that is, b1 as in equation (6). The IE method 

then uses the eigenvector matrix arising from the design matrix X to transform the extended coefficient 

vector �U�V
S  including the added zero element, back to the original age-period-cohort space to obtain 
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coefficient estimates for age, period, and cohort corresponding to the OLS and ML estimates in the PC 

space. 

Given that OLS and ML estimators have been proven unbiased in simpler— identifiable— 

problems with normally distributed errors, as in equation (2), and since IE uses these methods to obtain 

estimates for b1, whose projection in the PC space corresponds to extended coefficient vector �U�V
S , IE  

yields unbiased estimates for b1. In other words,  

                                                                      ������ � �#.                                                                    (24)                                                                           

Now based on the preceding discussion on the identification problem of APC models, the “true” 

parameter space b can be decomposed into two orthogonal subspaces corresponding to b1 and b0 in 

equation (6), which is equivalent to 

                                                               �# � � � / · �..                                                                 (25) 

Substituting equations (25) in (24) results in  

                                                          ������ � �# � � � / · �..                                                    (26)                                                                           

Equation (26) means that the expectation of the IE estimator will be different from the true effects 

unless / · �. � 0 or / � 0. IE assumes s=0; Thus, IE is a biased estimator when the true value of s is 

anything but 0. The larger the absolute value of s, the more biased the IE estimate becomes.  

This theoretical demonstration of the bias of IE has important implications for empirical APC 

analysis. For researchers who are interested in separating age, period, and cohort effects, there exists 

little theoretical or empirical knowledge about what b0, the “null eigenvector,” may imply about the 

outcome variable. In specific applications, then, the IE estimator must be assumed to be biased, 

resulting in misleading conclusions about the “true” age, period, and cohort effects unless proven 

otherwise.   
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Consistency 

In statistics, for a consistent estimator δ, δ must converge in probability to the unknown 

parameter ϐ as the sample size grows. If unbiased, consistency follows immediately. A biased estimator 

can be consistent if its bias decreases as the sample size increases. However, the bias of IE, / · �., does 

not necessarily shrink as the sample size grows. Thus, the IE method is not a consistent estimator of the 

coefficient vector b.  

This theoretical argument on consistency can be illustrated with simulation results. Simulation is 

considered a helpful technique to illustrate the statistical properties of an estimator such as 

unbiasedness, consistency, or efficiency when these properties cannot be computed in closed form. 

When applying simulation methods to study the probabilistic features of consistency for a biased 

estimator, if the estimator is consistent, one should expect to see that as the sample size increases, the 

bias should be reduced, and the estimates must be closer and closer to the value specified in the 

simulation function. It follows that provided IE is a consistent estimator, its bias, / · �., should become 

smaller and smaller, and  the estimates should become closer and closer to the “true” effects of age, 

period, and cohort.  

To assess IE against the consistency criterion, I generate a data set of 1,000 cross tables in R 

2.13.0 using the simulation function below: 

                                 W��~YHGZ�[\3 � 10 � 3 · ��F� � 4 · �FG�HI� � 1 · JHKHGL��, ] � 0.1^,       (27)                                           

where the response variable Yij for people at age i in period j has a Normal distribution with mean 

�10 � 3 · ��F� � 4 · �FG�HI� � 1 · JHKHGL��� and standard variation 0.1. For this specification, ka= 3, 

kp=4, and kc=1. I begin with three age categories, three time periods, and five cohort groups, and then 

increase the number of periods to 10 and 100 while the number of age categories is fixed at three. If IE 

is a consistent estimator, as the number of periods increases, the resulted estimates should get closer 

and closer to the simulated values, the true effects that we know based on the simulation function. 



17 
 

Figure 3 presents the estimated effects along with the true values for the three data where the 

number of time periods is set at three, 10, and 100, respectively. These figures show that as the number 

of time period increases from three to 100, the estimated effects are not converging to the “true” 

effects. Specifically, the IE estimates for the age effects are grossly incorrect, suggesting an opposite 

linear trend. For the period and cohort effects, although the IE method correctly captures the direction 

of the trend, there is no evidence that these estimates are converging to the “true” period and cohort 

effects.  

[Figure 3 about here] 

On the one hand, Yang et al. (2008) correctly note the estimation of the period and cohort 

effects will not improve with more time periods because “adding a period to the data set does not add 

information about the previous periods or about cohorts not present in the period just added” (p 1718). 

On the other hand, the estimated coefficients for age effects using the IE did appear to become closer 

and closer to the “true” value as the number of period increases when they simulated data using the 

following function: 

W��~=H�//H_`exp d0.3 � 0.1���F� � 5�4 � 0.1 sin2�FG�HI�8 

                                             �0.1 cos2JHKHGL��8 � 0.1sin �10 · JHKHGL���jk,                                     (28) 

where the response variable Yij has a Poisson distribution with mean parameter l0.3 � 0.1���F� �

5�4 � 0.1 sin2�FG�HI�8 � 0.1 cos2JHKHGL��8 � 0.1 sin210 · JHKHGL��8m. 

The reason why IE estimates of the age effects converge to the “true” effects as the number of 

period increases appears to rest on the fact that, as illustrated in Figure 4, the linear trend in the true 

age effects is flat, and the true period and cohort effects in their simulations becomes flatter as the 

number of period increases from five to 50. This is because Yang and colleagues use a sine function for 

the period effects and a combination of sine and cosine functions for cohort effects; as the number of 



18 
 

period increases, these sine and functions become closer to a flat line that satisfies the IE constraint. As I 

point out above, the implicit constraint that IE imposes is  

                                            � · �. � [ · �! � Z · �$ � _ · �? � 0                                                   (29)                 

where ka, kp, kc, are defined as in equation (11) and can be obtained by fitting a linear regression line for 

the “true” age, period, and cohort effects; l, m, n are real numbers that are determined by the number 

of age, period, and cohort groups. As shown in Figure 4, for the data set generated by function (28) with 

only five time periods, ka, kp, and kc (the slopes of the dotted line in the graphs) are 0.0000, -0.053, -

0.004, respectively, a situation where equation (29) does not hold (� · �. � �0.339). When the number 

of period increases to 50, with ka remaining unchanged, kp, and kc are all almost zero (-0.00047 and -

0.00029, respectively). As a result, equation (29) is approximately achieved (� · �. � �0.036) regardless 

of the values of l, m, and n because kp and kc are close to zero. In other words, the implicit constraint of 

IE is approximately satisfied for simulated data where the linear trends in age, period, and cohort effect 

are approaching zero when the number of time period increases. For social data where neither the 

linear trends in the three variables, nor the relationship between these trends and number of periods 

are known to researchers, adding more periods or cohorts promises nothing about the accuracy about 

coefficient estimation for either age effects or period or cohort effects. Even with an unrealistically large 

number of periods (e.g. 100 periods), as I have shown in Figure 3c and will show in Figure 5, the IE 

produces poor estimates that are vastly different from the “true” effects. 

The simulation results help to illustrate the theoretical argument that IE is not a consistent or 

unbiased estimator of “true” age, period, and cohort effects when the three variables are all of potential 

interest. For a biased and inconsistent estimator such as IE, no matter how large the sample size 

becomes, one cannot obtain estimates that are close to the “true” effects. Therefore, even with a 

sufficiently large sample, researchers using IE to estimate age, period, and cohort effects are not 

guaranteed to have desirable results that are close to the “true” value. 
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Application Scope: CGLM vs. IE 

While recognizing that “the IE may in fact also be viewed as a constrained estimator” (Yang et al. 2008, p 

1706), the IE’s inventors claim that IE has clear advantages over the conventional CGLM approach based 

on simulations in which IE estimates are closer to the “true” effects of age, period, and cohort than the 

CGLM results. However, the age, period, and cohort effects in the simulated data in Yang et al’s (2008) 

paper approximately meet the constraint that IE imposes. For other kinds of age, period, and cohort 

effects not satisfying IE’s implicit constraint, IE will not perform better than CGLM and may perform 

much worse. Thus, IE is not necessarily better than the CGLM method, because the restriction that IE 

imposes is essentially no different from the constraints assumed in the CGLM method.  

To illustrate, I show simulations, as Yang and colleagues did, to compare the CGLM and IE 

estimates but the data-generating mechanisms will satisfy the constraint assumed by the CGLM but not 

the implicit constraint assumed by IE. Moreover, I will simulate from four models that accommodate 

social theories and conform to empirical reality. The first data set is simulated to represent the common 

observation that overall health status for adults deteriorates as they grow older, and that recent 

development in health knowledge and technology have improved health conditions and life expectancy 

for the entire population, so people born in more recent years are likely to be healthier than older 

cohorts. On the other hand, the sociological, epidemiological, and demographic literature has also 

suggested that age, period, or cohort effects may not all exist (Winship and Harding 2008, Fabio, Leober, 

Balasubramani, Roth, Fu, and Farrington 2006, Preston and Wang 2006). The other three simulations are 

used accordingly to generate data that approximate the likely empirical situation where one of the three 

variables has little impact on the outcome of interest. 

Specifically, I fix the number of age groups at nine and periods at 50 in all of my simulations with 

little loss of generality. I then generate 1,000 data sets from each of the following four models for the 9 

by 50 outcome matrix for nine age groups and 50 periods. 
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                       W��~YHGZ�[`10 � 0.4 · ��F� � 0.1 · ��F�
4 � 1 · �FG�HI� � 1.5 · JHKHGL��, ] � 0.1k (30) 

                                             W��~YHGZ�[`10 � 1 · �FG�HI� � 1.5 · JHKHGL��, ] � 0.1k                            (31)                  

                                 W��~YHGZ�[`10 � 0.4 · ��F� � 0.1 · ��F�
4 � 1.5 · JHKHGL��, ] � 0.1k                  (32) 

                                   W��~YHGZ�[`10 � 0.4 · ��F� � 0.1 · ��F�
4 � 1 · �FG�HI�, ] � 0.1k                    (33) 

For instance, in equation (30), the outcomes for people with age i in period j are normally distributed 

with mean 10 � 0.4 · ��F� � 0.1 · ��F�
4 � 1 · �FG�HI� and standard deviation ] � 0.1. In equation (31), 

(32), and (33), one of the age, period, and cohort effects are not present while the effects for the other 

two variables are the same as in equation (30). Note that none of these models satisfies the constraint 

that IE implicitly assumes; specifically, for the first model, � · �. � 83.80; for the second model, 

� · �. � 83.94; for the third model, � · �. � 145.49; and for the last model, � · �. � �61.83.    

Figure 5a through Figure 5d present and compare the IE estimates and CGLM estimates using 

two different constraints to the true effects for the four models. The coefficient estimates obtained 

using the IE method are largely away from true effects for all the models because for all four models, the 

implicit constraint that IE assumes is not satisfied. In Figure 5c, when there is no period effect in the data 

generating mechanism (32), the IE estimates suggest a substantially positive period effect on top of the 

inaccurate estimates for age and cohorts effects. In contrast, the CGLM assuming equal age effects for 

the first and third age group produces close estimates for all four models. It is equally important to note 

that the performance of the CGLM estimator also depends on whether its assumption approximates the 

true effects. For instance, in Figure 5c, whereas the CGLM that assumes equal age effects for the first 

and third group yields good estimates, the same method with a different constraint, that is, the age 

effects are the same for the first and second group, results in estimates as poor as the IE estimates.  

[Figure 5 about here] 
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Conclusion and Discussion 

This paper focuses on the Intrinsic Estimator (IE), a statistical method intended to separate the effects of 

age, period, and cohort on sociological, demographic, and epidemiological outcomes. I have discussed 

the nature and application scope of IE theoretically and illustrated it with simulation data. This paper has 

shown that IE implicitly assumes a very specific constraint on the age, period, and cohort effects. This 

assumption not only depends on the number of age, period, and cohort groups, but also is extremely 

difficult, if not impossible, to verify in empirical research. This feature of IE is no different from the 

constraints assumed in the CGLM method except that the CGLM constraint does not change 

automatically as the number of age, period, and cohort groups changes. The conclusion is that IE’s 

strategy of circumventing the identification problem inherent in the APC model (1), by using an obscure 

constraint, can yield grossly incorrect estimates and thus is potentially misleading.  

More than a quarter century ago, Glenn (1976) argued that attempts to statistically quantify 

effects of age, period, and cohort are “a futile quest.” Yet this quest has not been abandoned and, 

ironically, numerous authors have cited Glenn’s work as the authority for encouraging statistical APC 

models. The intellectual origin of this continued quest lies in the belief that despite the exact equality, 

Cohort = Period - Age, there must exist simultaneously separate effects of age, period, and cohort 

underlying the social phenomena that we observe. In other words, the identification problem is 

considered as merely a statistical barrier that makes estimation difficult while the theoretical merits of 

APC analysis are still relevant and scientists are legitimately motivated to search for a technical solution. 

To (re)navigate the future development of cohort analysis, this paper aims beyond the evaluation of 

specific statistical techniques such the IE and the CGLM approaches to emphasize the theoretical and 

methodological problems of separating age, period, and cohort effect using the APC multiple 

classification model (1).   
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The fundamental goal for researchers who are interested in APC analysis is to investigate the 

“true, simultaneously independent effects” of age, period, and cohort effects. What does “effect” mean? 

In general, for two random variables W and Z, we say W has an effect on Z, if (a) had W had taken a 

different value than it actually did, and (b) everything else temporally prior to or simultaneous with W 

remained unchanged, then Z would have taken a different value. In the APC problem specifically, we 

may say that period, for example, has a distinct effect on the outcome if (a) had period had taken a 

different value than it actually did, and (b) age and cohort as well as other variables temporally prior to 

or simultaneous with period remained unchanged, then the outcome of interest would have taken a 

different value. The two sufficient and necessary conditions to establish a (causal) effect between two 

variables, however, cannot be satisfied in the case of APC analysis because when two of the three 

variables remain fixed (condition b), it is impossible for the third variable to take a different value 

(condition a). For example, once we have a person’s birth year and the time of measurement, we know 

his or her age using the exact equality Cohort = Period – Age. It is not possible to manipulate the value of 

one of the APC variables while holding the other two constant. Therefore, even in theory and logic, 

there cannot be “simultaneously independent” effects of age, period, and cohort. Note that I am not 

arguing that age, period, or cohort effects do not exist; rather, my argument is that with the presence of 

any two of the three variables, the third one does not make additional contribution to explaining the 

variation in the phenomenon of scientific interest and thus it does not have “conditional” effects.  

The current APC literature emphasizes the “unusual” statistical challenge to quantify the linear 

effects of age, period, and cohorts (Holford 1983, Kupper et al. 1985) but fails to recognize theoretical 

and logical problems inherent in APC models. When there is no logical basis for the existence of 

simultaneously independent effects of age, period, and cohort, the statistical methods are doomed to 

fail. On the one hand, the identification problem, i.e., that no unique set of solutions exists, is the 

immediate consequence of including all three variables (age, period, and cohort) in a statistical model. It 
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is important to understand that the identification problem inherent in APC models is not a statistical 

challenge in nature; rather, it is an adverse consequence of the fundamental problem in theoretical 

framing and logical reasoning about causal effects of age, period, and cohort. To this extent, the 

identification problem “is a blessing for social science” (Heckman and Robb, 1985) because it warns 

scientists that they want something – a general statistical decomposition of data – for nothing.  

Therefore, the search for a definitive separation of age, period, and cohort effects is not only a futile but 

also a false quest. 

On the other hand, even if the identification problem could be circumvented by using 

constraints, research assuming that age, period, and cohort groups are “independently” related to the 

outcome of interest will lead to conclusions that are logically paradoxical. A possible conclusion, for 

example, may be: “with age and cohort [two variables temporally prior to or simultaneous with time 

period] remaining unchanged, the outcome of scientific interest varies (or does not vary) across 

different time periods.” This conditional interpretation of the statistical coefficients, however, makes no 

sense because, for example, the variable of period cannot vary after accounting for the person’s age and 

his or her birth year in the APC model. In other words, the differences among period groups have been 

completely captured by the variation in age and period. The same problem occurs for understanding the 

age and cohort effect coefficients, as structured in model (1).  

Furthermore, according to Karl Popper, to be scientific in nature any argument and conclusion 

must be disprovable. Consider the data in Figure 1 where three very different processes yield an 

identical data set. This can also be interpreted as meaning that for the same data, there exist an infinite 

number of equally good estimates. None of these estimates can be said to be more accurate or to have 

a better chance of revealing the “true” underlying mechanism than others, because there is no way to 

define true, simultaneously independent effects of age, period, and cohort. Nor can we ever replicate or 

falsify the conclusions using empirical data with different statistical techniques because the estimates 
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depend completely on the constraints that a specific method imposes. In other words, APC research that 

aims to recover “simultaneously independent” age, period, and cohort effects is empirically unfalsifiable 

and theoretically meaningless. 
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Tables and Figures 
 
Table 1. Deaths per 100,000: U.S. males, 1970-2004 
 

Age 1970-74 1975-79 1980-84 1985-89 1990-94 1995-99 2000-04 

0- 493 384 311 279 237 198 181 
5- 48 39 33 28 24 20 17 
10- 50 43 36 35 31 27 23 
15- 157 143 125 120 125 104 93 
20- 218 199 178 166 163 144 139 
25- 200 189 178 178 178 142 134 
30- 221 193 188 213 225 180 148 
35- 303 257 230 260 284 236 205 
40- 461 392 339 335 359 329 302 
45- 738 632 547 503 486 461 453 
50- 1,128 1,005 894 807 730 660 650 
55- 1,783 1,523 1,410 1,296 1,160 1,036 952 
60- 2,693 2,395 2,144 2,025 1,834 1,654 1,473 
65- 3,951 3,484 3,251 3,013 2,779 2,528 2,254 
70- 5,854 5,321 4,915 4,659 4,158 3,902 3,498 
75- 8,487 7,590 7,243 6,941 6,310 5,897 5,462 
80- 12,358 11,444 11,089 10,809 10,124 9,615 8,650 
85- 18,182 16,752 16,427 16,274 15,527 15,453 14,442 
90+ 28,050 26,450 26,095 26,479 26,009 26,653 26,389 
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Table 2. Different values of s and the corresponding coefficents for age, period, and cohort. 

s  
Age Effects 

 
Period Effects 

 
Cohort Effects 

  1 2 3   1 2 3   1 2 3 4 5 

  
              

0 
 

2 0 -2 
 

-1 0 1 
 

-1 -0.5 0 0.5 1 

  
              

2 
 

0 0 0 
 

1 0 -1 
 

-5 -2.5 0 2.5 5 

  
              

10 
 

-8 0 8 
 

9 0 -9 
 

-21 -10.5 0 10.5 21 

 
Note:  1. s is an arbitrary real number correspoding to a specific solution to equation (3). 

2. Numbers in each row correspond to a set of age, period, and cohort coefficients corresponding to a specific 
value of s,and thereof, a specific set of solution. 
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Figure 1a. Tabular data: observed cells and the unobserved parameters αi, ϐj, and γk from model (1).    
 

 

 

 

 

Figure 1b. Tabular data: identical fitted values produced by the three different paramters vectors in 
Table 2.   

  



31 
 

 
Figure 2a. Simulation results: IE estimates for dataset 1 in Table 3. 
 

 

Figure 2b. Simulation results: IE estimates for dataset 2 in Table 3. 
 

 
Figure 2c. Simulation results: IE estimates for dataset 3 in Table 3.                           
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Figure 3a. Simulation results: Inconsistency of the IE estimator; number of periods = 3; simulation 
function: W��~YHGZ�[\3 � 10 � 3 · ��F�� � 4 · �FG�HI�� � 10 · JHKHGL��, ] � 0.1^                                                         
 

Figure 3b. Simulation results: Inconsistency of the IE estimator; number of periods = 10; simulation 
function: W��~YHGZ�[\3 � 10 � 3 · ��F�� � 4 · �FG�HI�� � 10 · JHKHGL��, ] � 0.1^ 
 

 

Figure 3c. Simulation results: Inconsistency of the IE estimator; number of periods = 100; simulation 
function: W��~YHGZ�[\3 � 10 � 3 · ��F�� � 4 · �FG�HI�� � 10 · JHKHGL��, ] � 0.1^  
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Figure 4a. Linear trends in age, period, and cohort effects in Yang et al.’s (2008) simulated data when the 
number of period = 5 
 

 
Figure 4b. Linear trends in age, period, and cohort effects in Yang et al.’s (2008) simulated data when 
the number of period = 50 
 
Note: Dotted lines are fitted linear regression slopes in true effects of age, period, and cohorts, 
respectively. 
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Figure 5a. Simulation results: IE vs. CGLM; number of periods = 50; simulation function: 
 W��~YHGZ�[`3 � 10 � 0.4 · ��F�� � 0.1 · ��F��

4 � 1 · �FG�HI�� � 1.5 · JHKHGL��, ] � 0.1k    
 

    
Figure 5b. Simulation results: IE vs. CGLM; number of periods = 50; simulation function: 
W��~YHGZ�[`3 � 10 � 1 · �FG�HI�� � 1.5 · JHKHGL��, ] � 0.1k                 
                                         

Figure 5c. Simulation results: IE vs. CGLM; number of periods = 50; simulation function: 
W��~YHGZ�[`3 � 10 � 0.4 · ��F�� � 0.1 · ��F��

4 � 1.5 · JHKHGL��, ] � 0.1k                       
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