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1. Introduction 

 

In demographic analysis, the (period) total fertility rate (TFR ) is one of the most widely used 

summary indicators for measuring the period fertility of a population. The total fertility rate is 

a period indicator, i.e. it is defined based on variables for the same period (e.g., a calendar 

year). However, when the demographic meaning of the total fertility rate is interpreted, 

demographers have to refer to a hypothetical (synthetic) birth cohort of women because of the 

nature of the definition of the total fertility rate. By definition, the total fertility rate is the sum 

of the age-specific fertility rates in a given year. The standard demographic interpretation of 

the total fertility rate is that it represents the average number of children that a hypothetical 

(synthetic) birth cohort of women would bear during their entire reproductive life span 

(normally between ages 15 and 50) if (i) all the women (of the birth cohort) survive through to 

the end of their reproductive life span, and (ii) they follow the age-specific fertility rates of the 

year in question. 

 

So far, there has been a huge amount of demographic research on the total fertility rate. Now, 

researchers and demographers are very familiar with the advantages and disadvantages of the 

total fertility rate (e.g., Shryock, Siegel and Associates (1980); Ní Bhrolcháin (1992); Bogue, 

Arriaga, and Anderton (1993); Bongaarts and Feeney (1998); Ní Bhrolcháin (2007)). In 

demographic analysis, the total fertility rate is usually used for measuring and comparing (the 

level of) period fertility over time and/or across regions. The total fertility rate is also 

commonly used in population projections. 

 

The present paper discusses a special property of the total fertility rate as a statistical indicator 

per se, i.e. the (quantitative) relationship between the total fertility rate of a total population 

and the total fertility rates of two sub-populations. 

 

Suppose that we have a total population (denoted as P ), which is divided into two sub-

populations 1P  and 2P , and the two sub-populations satisfy the following conditions: 

=∩ 21 PP Ø (null) and PPP =∪ 21 . Mathematically, it can be easily proved that the crude 

birth rate (CBR ) of the total population for a given year is the weighted average of the crude 

birth rates of the two sub-populations for the same year, with the weights being the respective 

proportions of the two sub-populations in the total population. Now, the question is: Does the 



On a Special Property of the Total Fertility Rate – by Lu Lei (China) 

Page 2 

total fertility rate have a similar property? 

 

Let TFR  denote the total fertility rate of the total population ( P ), and 1TFR  and 2TFR  

denote the total fertility rates of the two sub-populations ( 1P  and 2P ) respectively. In the 

present paper, we will look at the relationship between TFR  and [ 1TFR  and 2TFR ]. 

 

Let )(xW  represent the number of women aged x at the midpoint of a given year t and )(xB  

represent the number of live births delivered by women of age x in the same year, then the 

(period) age-specific fertility rate for age x of year t is defined as )()()( xWxBxf = , 

49,,16,15 K=x , and }{ 491615)( ...,,,xxf =  is called the (period) age pattern of fertility. 

The corresponding total fertility rate is then defined as ∑
=

=
49

15

)(
x

xfTFR . The total fertility 

rates of the two sub-populations are ∑
=

=
49

15

11 )(
x

xfTFR  and ∑
=

=
49

15

22 )(
x

xfTFR , where )(1 xf  

and )(2 xf  are the (period) age-specific fertility rates of the two sub-populations of year t. 

Mathematically, the calculation of the total fertility rate is simple and straightforward. 

 

2. A graphical analysis of the relationship between TFR  and [ 1TFR  and 2TFR ] 

 

Since the total fertility rate is the summation of the corresponding age-specific fertility rates, 

let’s first look at the relationship between the age-specific fertility rates of the total population 

and the age-specific fertility rates of the two sub-populations. According to the definition of 

the age-specific fertility rate for age x, we can easily arrive at the following: 

 

 )()()()()( 2211 xfxuxfxuxf ⋅+⋅= , (1) 

 

where )(xf  is the age-specific fertility rate of women aged x of the total population, )(1 xf  

and )(2 xf  are the age-specific fertility rates of women aged x of the two sub-populations 

respectively, )()()( 11 xWxWxu = and )()()( 22 xWxWxu = are the proportions of women aged 

x of the two sub-populations in the women aged x of the total population. It is obvious that 

0)(),( 21 >xuxu  and 1)()( 21 =+ xuxu , for all ages 49,,16,15 K=x . Therefore, equation (1) 

shows that for each age x ( 49,,16,15 K=x ), )(xf  is a weighted average of )(1 xf  and 
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)(2 xf . In other words, for each age x ( 49,,16,15 K=x ), )(xf  always falls between )(1 xf  

and )(2 xf . Specially, if for an age ∗x , there is )()( 21

∗∗ = xfxf  (i.e. the two fertility curves 

)(1 xf  and )(2 xf  intersect at age ∗x ), then we have )()()( 21

∗∗∗ == xfxfxf , i.e. curve 

)(xf  must pass through the point of intersection. Next, we discuss different situations based 

on the relative relations between the two fertility curves )(1 xf  and )(2 xf . 

 

2.1 First type of relative relation between )(1 xf  and )(2 xf  (Figure 1) 

In this situation, the age-specific fertility rate of all ages )49,,16,15( K=x  of the sub-

population 1 is lower than the corresponding rate in sub-population 2, i.e. )()( 21 xfxf < , 

49,,16,15 K=x . Therefore, we have )()()( 21 xfxfxf << , 49,,16,15 K=x . 

 

Figure 1. First type of relative relation between )(1 xf  and )(2 xf  

 

By taking summation with respect to age x, we obtain ∑∑∑
===

<<
49

15

2

49

15

49

15

1 )()()(
xxx

xfxfxf , i.e. 

21 TFRTFRTFR << . It is obvious that, in this situation, the relationship 21 TFRTFRTFR <<  

)(xf  
)(1 xf  
)(2 xf  

15 50 
Age 
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always holds regardless of the values of )(1 xu  or )(2 xu . However, it is not possible to know 

if TFR  is a weighted average of [ 1TFR  and 2TFR ], as this will require knowledge of )(1 xu  

or )(2 xu . 

 

2.2 Second type of relative relation between )(1 xf  and )(2 xf  (Figure 2) 

In this situation, the three fertility curves )(xf , )(1 xf  and )(2 xf  intersect at age α  and 

form five regions, i.e. A, B, C, D and E. In age interval ),15( α , we have 

)()()( 12 xfxfxf << , and in age interval )50,(α , we have )()()( 21 xfxfxf << . Let A, B, C, 

D and E represent the areas of the corresponding regions. When the two curves )(1 xf  and 

)(2 xf  are fixed, areas A, B, D and E change with )(1 xu  and )(2 xu , while area C remains 

constant. It is obvious that, no matter what values )(1 xu  and )(2 xu  take, BA +  and 

ED +  are constant. Let BAX +=  and EDY += , then X and Y are not affected by )(1 xu  

and )(2 xu . 

 

Figure 2. Second type of relative relation between )(1 xf  and )(2 xf  

 

)(xf  

)(1 xf  

)(2 xf

15 50 

Age 
α  

D 

E A 

B 

C 
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The following table provides a summary of the theoretical upper and lower limits of areas B 

and D, depending on )(1 xu  and )(2 xu . 

 

Table 1. Theoretical upper and lower limits of areas B and D 

Area Age Interval ),15( α  Age Interval )50,(α  

Upper limit 

X 

(when )(1 xu →1 

or )(2 xu →0) 

 

B 

Lower limit 

0 

(when )(1 xu →0 

or )(2 xu →1) 

 

Upper limit  

Y 

(when )(1 xu →0 

or )(2 xu →1) 
D 

Lower limit  

0 

(when )(1 xu →1 

or )(2 xu →0) 

 

Since 

 DCBTFR ++=  (2) 

 CXCBATFR +=++=1  (3) 

 CYEDCTFR +=++=2  (4) 

we have 

 E)C(ATFRTFRTFR ++−+= 21  (5) 

 

It is obvious that area A is affected by )(1 xu  and )(2 xu  )15( αx <<  and area E is affected 

by )(1 xu  and )(2 xu  )50( << xα , while area C is not affected by )(1 xu  and )(2 xu  

)5015( << x . From equation (2) and Table 1, we know that the TFR  has a theoretical upper 

limit of CYX ++  and a theoretical lower limit of C. From equations (3) and (4), we can 

obtain CTFRTFRCYX −+=++ 21 . Thus, the theoretical upper limit for the TFR  is 

CTFRTFR −+ 21 . 

 

It is obvious that area C is completely determined by the relative relations of the two fertility 

curves )(1 xf  and )(2 xf . Specially, when 0=C  (i.e. the two fertility curves )(1 xf  and 

)(2 xf  do not have an overlap), the TFR  has a theoretical upper limit of 21 TFRTFR +  and a 
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theoretical lower limit of zero. 

 

2.3 Third type of relative relation between )(1 xf  and )(2 xf  (Figure 3) 

In this situation, the three fertility curves )(xf , )(1 xf  and )(2 xf  intersect at ages α  and 

β  and form seven regions, i.e. A, B, C, D, E, F and G. In age interval ),15( α , we have 

)()()( 12 xfxfxf << ; in age interval ),( βα , we have )()()( 21 xfxfxf << ; and in age 

interval )50,(β , we have )()()( 12 xfxfxf << . Let A, B, C, D, E, F and G represent the 

areas of the corresponding regions. When the two curves 1

xf  and 2

xf  are fixed, areas A, B, 

D, E, F and G change with )(1 xu  and )(2 xu , while area C remains constant. It is obvious 

that, no matter what values )(1 xu  and )(2 xu  take, BA + , ED +  and GF +  are 

constant. Let BAX += , EDY +=  and GFZ += , then X, Y and Z are not affected by 

)(1 xu  and )(2 xu . 

 

Figure 3. Third type of relative relation between )(1 xf  and )(2 xf  

 

The following table provides a summary of the theoretical upper and lower limits of areas B, 

)(xf  
)(1 xf  
)(2 xf  

15 50 

Age 

B 

A 

G 
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D and G, depending on )(1 xu  and )(2 xu . 

 

Table 2. Theoretical upper and lower limits of areas B, D and G 

Area Age Interval ),15( α  Age Interval ),( βα  Age Interval )50,(β  

Upper limit 

X 

(when )(1 xu →1 

or )(2 xu →0) 

  

B 

Lower limit 

0 

(when )(1 xu →0 

or )(2 xu →1) 

  

Upper limit   

Y 

(when )(1 xu →1 

or )(2 xu →0) 
D 

Lower limit   

0 

(when )(1 xu →0 

or )(2 xu →1) 

Upper limit  

Z 

(when )(1 xu →0 

or )(2 xu →1) 

 

G 

Lower limit  

0 

(when )(1 xu →1 

or )(2 xu →0) 

 

 

Since 

 GDCBTFR +++=  (6) 

 CYXEDCBATFR ++=++++=1  (7) 

 CZGFCTFR +=++=2  (8) 

we have 

 F)EC(ATFRTFRTFR +++−+= 21  (9) 

 

It is obvious that area A is affected by )(1 xu  and )(2 xu  )15( αx << , area F is affected by 

)(1 xu  and )(2 xu  )( βxα << , and area E is affected by )(1 xu  and )(2 xu  )50( << xβ , 

while area C is not affected by )(1 xu  and )(2 xu  )5015( << x . From equation (6) and Table 

2, we know that the TFR  has a theoretical upper limit of CZYX +++  and a theoretical 

lower limit of C. From equations (7) and (8), we can obtain 

CTFRTFRCZYX −+=+++ 21 . Thus, the theoretical upper limit for the TFR  is 

CTFRTFR −+ 21 . 
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It is obvious that area C is completely determined by the relative relations of the two fertility 

curves )(1 xf  and )(2 xf . Specially, when C tends to 0, the TFR  approaches the theoretical 

upper limit of 21 TFRTFR + . 

 

From the above graphical analysis, we can conclude that the TFR  has a theoretical upper 

limit of 21 TFRTFR +  and a theoretical lower limit of zero. Here, we have an interesting 

observation. Although the TFR  is standardized for the age-sex structure of the total 

population, it is affected by the relative age distributions of the women of reproductive ages of 

the two sub-populations. In a special situation where 21 TFRTFR =  (i.e. the two sub-

populations have the same total fertility rate), we cannot guarantee that 21 TFRTFRTFR ==  

because the TFR  is affected by )(1 xu  and )(2 xu , while 1TFR  and 2TFR  are not. 

 

3. A mathematical analysis of the relationship between TFR  and [ 1TFR  and 2TFR ] 

 

From the above graphical analysis, we have noticed that the relationship between the TFR  

and the [ 1TFR  and 2TFR ] is complex. For given 1TFR  and 2TFR , the TFR  may range 

between zero and 21 TFRTFR + , depending on )(1 xu  and )(2 xu . Now, let’s look at the 

relationship between the TFR  and the [ 1TFR  and 2TFR ] from a mathematical perspective. 

 

Let 111 )()( TFRxfxg =  and 222 )()( TFRxfxg = , 49,,16,15 K=x , then it is obvious that 

0)(),( 21 ≥xgxg , 1)(
49

15

1 =∑
=x

xg  and 1)(
49

15

2 =∑
=x

xg . Sequences { }49,,16,15)(1 K=xxg  and 

{ }49,,16,15)(2 K=xxg  are called the standardized (period) age patterns (schedules) of 

fertility of the two sub-populations. From the above definitions, we have )()( 111 xgTFRxf ⋅=  

and )()( 222 xgTFRxf ⋅= . By taking summation on the two sides of equation (1) with respect 

to x, we obtain 

 

 ∑∑
==

⋅⋅+⋅⋅=
49

15

222

49

15

111 )]()([)]()([
xx

xgxuTFRxgxuTFRTFR  (10) 
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Equation (10) gives the general mathematical relationship between TFR  and [ 1TFR  and 

2TFR ], which provides the theoretical basis for the discussions below. Let 

∑
=

⋅=
49

15

111 )]()([
x

xgxuk  and ∑
=

⋅=
49

15

222 )]()([
x

xgxuk . Since 1)(0 1 << xu , and 1)(0 2 << xu , it 

follows that 10 1 << k  and 10 2 << k . Equation (10) can be written as 

 

 2211 TFRkTFRkTFR ⋅+⋅=  (11) 

 

Equation (11) shows that the relationship between TFR  and [ 1TFR  and 2TFR ] is 

completely determined by the two coefficients 1k  and 2k . Suppose that 21 TFRTFR ≤ , then 

from equation (11), we have 221121 )()( TFRkkTFRTFRkk ⋅+≤≤⋅+ . 

 

Let 

 { }491615)(max 1

max

1 , ..., ,  x xuu ==  (12) 

 { }491615)(min 1

min

1 , ..., ,  x xuu ==  (13) 

and 

 { }491615)(max 2

max

2 ...,,, x xuu ==  (14) 

 { }491615)(min 2

min

2 , ..., ,  x xuu ==  (15) 

 

Since 1)()( 21 =+ xuxu , 49,,16,15 K=x , it can be proved that 1min

2

max

1 =+ uu  and 

1max

2

min

1 =+ uu , and further min

2

max

2

min

1

max

1 uuuu −=− . In addition, it can also be proved that 

max

11

min

1 uku ≤≤  and max

22

min

2 uku ≤≤ . Therefore, we have max

2

max

121

min

2

min

1 uukkuu +≤+≤+ . 

 

According to the definition of the two coefficients 1k  and 2k , we have 

 

 { } { }∑∑
==

−⋅+=−⋅+=+
49

15

122

49

15

21121 )]()([)(1)]()([)(1
xx

xgxgxuxgxgxukk  (16) 

 

Equation (16) shows that the two coefficients 1k  and 2k  do not necessarily constitute a pair 

of weights. Whether the two coefficients 1k  and 2k  form a pair of weights depends on the 
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second term on the right-hand side of equation (16). Therefore, the TFR  may not be a 

weighted average of 1TFR  and 2TFR  with respect to 1k  and 2k . 

 

Let { }∑
=

−⋅=
49

15

211 )]()([)(
x

xgxgxuk , then we have kkk +=+ 121 . It is obvious that whether 

the two coefficients 1k  and 2k  constitute a pair of weights depends on the value of k. From 

the discussion above, we have 11 <<− k . Specially, when 0=k , then the TFR  is a 

weighted average of 1TFR  and 2TFR , with 1k  and 2k  being the two respective weights. 

 

Next, we look at the relationship between TFR  and [ 1TFR  and 2TFR ] under three special 

situations. 

 

3.1 First situation 

If the two sub-populations have the same standardized age pattern (schedule) of fertility 

(denoted as { }49,,16,15)( K=∗ xxg ), i.e. )()()( 21 xgxgxg ∗== , 49,,16,15 K=x , then 

from the definition of k, we have 0=k . In this situation, the TFR  is a weighted average of 

1TFR  and 2TFR , with ∑
=

∗⋅=
49

15

11 )]()([
x

xgxuk  and ∑
=

∗⋅=
49

15

22 )]()([
x

xgxuk  being the two 

respective weights. Obviously, in this situation, )(1 xu  and )(2 xu  do not affect the 

relationship, but affect the two weights. 

 

3.2 Second situation 

If the two sub-populations have the same total fertility rate (denoted as ∗TFR ), 

i.e. ∗== TFRTFRTFR 21 , then from equation (11), we have ∗⋅+= TFRkkTFR )( 21  

∗⋅+= TFRk)1( . Therefore, the relationship between the TFR  and the ∗TFR  is dependent 

on k. Specifically, when 0>k ，  we have ∗> TFRTFR ; when 0=k , we have 

∗= TFRTFR ; and when 0<k , we have ∗< TFRTFR . Here, we see that even if the two sub-

populations have the same total fertility rate, the TFR  (of the total population) may not 

necessarily be equal to the total fertility rate of the sub-populations. 

 

3.3 Third situation 

Suppose that )(1 xu  can be represented by the following n
th
-degree polynomial of x: 
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 ∑
=

⋅=⋅++⋅+⋅+=
n

i

i

i

n

n xxxxxu
0

2

2101 )()( λλλλλ L  (17) 

 

where n is a non-negative integer. Then from the definition of k, we have 

 

 [ ]∑ ∑∑ ∑
= == = 








−⋅⋅=








⋅⋅−=
n

i x

i

i

x

n

i

i

i xgxgxxxgxgk
0

49

15

21

49

15 0

21 )]()([)()]()([ λλ  (18) 

 

Define the r
th
 absolute moment (about zero or origin) of )(1 xg  and )(2 xg  as follows: 

 

 ∑
=

⋅=
49

15

11 )]([ˆ

x

r

r xgxgM  and ∑
=

⋅=
49

15

22 )]([ˆ

x

r

r xgxgM  (19) 

 

Then equation (18) can be rewritten as ∑
=

−⋅=
n

i

iii gMgMk
0

21 )]ˆˆ([λ . It is obvious that 

1ˆ
10 =gM  and 1ˆ

20 =gM . Define the mean age of )(1 xg  and )(2 xg  as follows: 

 

 ∑
=

⋅=
49

15

11 )]([
x

xgxgµ  and ∑
=

⋅=
49

15

22 )]([
x

xgxgµ  (20) 

 

then we have 111
ˆ gMg =µ  and 212

ˆ gMg =µ . Define the variance of )(1 xg  and 

)(2 xg  as follows: 

 

 ∑
=

⋅−=
49

15

1

2

11 )]()[(
x

xggxgv µ  and ∑
=

⋅−=
49

15

2

2

22 )]()[(
x

xggxgv µ  (21) 

 

then we have 2

1121 )(ˆ ggMgv µ−=  and 2

2222 )(ˆ ggMgv µ−= . 

 

Next, we look at three special cases. 

 

Case (1): )(1 xu  is a constant with respect to age x. This is equivalent to taking 0=n  in 
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equation (18), i.e. 01 )( λ=xu , 49,,16,15 K=x . In this case we have 

 

 0)()()]()([
49

15

2

49

15

10

49

15

210 =







−⋅=−⋅= ∑∑∑

=== xxx

xgxgxgxgk λλ  (22) 

 

Therefore, in this case, the TFR  is a weighted average of 1TFR  and 2TFR , with 01 λ=k  

and 02 1 λ−=k  being the two respective weights. 

 

Case (2): )(1 xu  is a linear function of age x. This is equivalent to taking 1=n  in equation 

(18), i.e. xxu ⋅+= 101 )( λλ , where 01 ≠λ . In this case we have 

 

 )( 211 ggk µµλ −⋅=  (23) 

 

If 21 gg µµ =  (denoted as µ ), then we have 0=k . In this case, the TFR  is a weighted 

average of 1TFR  and 2TFR , with µλλ ⋅+= 101k  and )(1 102 µλλ ⋅+−=k  being the two 

weights respectively. It is interesting to note that in this situation, the value of k is affected by 

the relative positions (as measured by the mean age of fertility) of the two standardized 

fertility curves )(1 xg  and )(2 xg , but not affected by the shapes of the two curves. 

 

Case (3): )(1 xu  is a quadratic function of age x. This is equivalent to taking 2=n  in 

equation (18), i.e. 2

2101 )( xxxu ⋅+⋅+= λλλ , where 02 ≠λ . In this case we have 

 

 { }])[(])[()( 2

2

21

2

12211 gvggvgggk +−+⋅+−⋅= µµλµµλ  (24) 

 

Equation (24) shows that, in this situation, the value of k is not only affected by the relative 

positions (as measured by the mean age of fertility) of the two standardized fertility curves 

)(1 xg  and )(2 xg , but also affected by the shapes of the two curves (as measured by the 

variance). It is obvious that if the two standardized fertility curves )(1 xg  and )(2 xg  have 

the same mean (denoted as µ ) and the same variance (denoted as v), then 0=k . The TFR  

is therefore a weighted average of 1TFR  and 2TFR , with )( 2

2101 vk +⋅+⋅+= µλµλλ  and 
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)]([1 2

2102 vk +⋅+⋅+−= µλµλλ  being the two weights respectively. 

 

If 21 gg µµ = , then from equation (24), we have )( 212 gvgvk −⋅= λ . In this case, 

0=k  is equivalent to 21 gvgv = . If 21 gg µµ ≠ , then 0=k  is equivalent to 

2

1

21

2

2

21

2

1 ])[(])[(

λ

λ

µµ

µµ
−=

−

+−+

gg

gvggvg
. 

 

Next, we establish the general criteria regarding the relationship between TFR  and [ 1TFR  

and 2TFR ]. From equation (11), we can obtain the following: 

 

(a) 21 TFRTFRTFR <<  is equivalent to 

 






 −

−
<

1

2

1

2

2

1 1

1
min

k

k
, 

k

k

TFR

TFR
 or 







 −

−
>

2

1

2

1

1

2 1

1
max

k

k
, 

k

k

TFR

TFR
 (25) 

 

(b) 21 TFRTFRTFR ==  is equivalent to 

 21 TFRTFR =  and 121 =+ kk  (26) 

 

(c) 1TFRTFR >  and 2TFRTFR >  is equivalent to 

 
1

2

2

1

1

2

1

1

k

k

TFR

TFR

k

k

−
<<

−
 (27) 

 

(d) 1TFRTFR <  and 2TFRTFR <  is equivalent to 

 
1

2

2

1

1

2 1

1 k

k

TFR

TFR

k

k −
<<

−
 (28) 

 

From (c) and (d) above, we notice that, theoretically speaking, it is possible that the TFR  is 

larger or smaller than both 1TFR  and 2TFR . This seems to be a “paradox”. Regarding 

Simpson’s paradox in demography, Cohen (1986) has made a comprehensive analysis of the 

commonly used crude rates in demography, e.g. the crude death rate (CDR ). 

 

Here, we need to add one point regarding the relationship between TFR  and [ 1TFR  and 
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2TFR ]. For convenience of discussion, we suppose that 21 TFRTFR < . 

 

When 121 >+ kk , from equation (11), we have 1121 )( TFRTFRkkTFR >⋅+> . But it cannot 

be guaranteed that there is also 2TFRTFR > . For example, if 21 =TFR , 52 =TFR , 8.01 =k  

and 4.02 =k , then we have 12.121 >=+ kk  and 6.3=TFR . In this case, the TFR  falls 

between 1TFR  and 2TFR . 

 

When 121 <+ kk , from equation (11), we have 2221 )( TFRTFRkkTFR <⋅+< . But it cannot 

be guaranteed that there is also 1TFRTFR < . For example, if 21 =TFR , 52 =TFR , 3.01 =k  

and 5.02 =k , then we have 18.021 <=+ kk  and 1.3=TFR . In this case, the TFR  falls 

between 1TFR  and 2TFR . 

 

From the discussions above, we know that even if coefficients 1k  and 2k  do not constitute a 

pair of weights (i.e. 121 ≠+ kk ), it is still possible that TFR  falls between 1TFR  and 

2TFR . It is obvious that when 121 =+ kk , TFR  always falls between 1TFR  and 2TFR . 

 

4. A real case with regard to the relationship between TFR  and [ 1TFR  and 2TFR ] 

 

Now, let’s look at a real case vis-à-vis the “paradox”. The data used are from the 1% 

Population Sampling Survey of China 1987, which was conducted by the National Bureau of 

Statistics of China. The total population here is the population of Shanghai Municipality and 

the two sub-populations are urban Shanghai and rural Shanghai. Table 3 shows the numerical 

values of the total fertility rates of Shanghai in 1986. 

 

Table 3. The total fertility rate of Shanghai, China, 1986 

Shanghai 

)(TFR  

Urban Shanghai 

)( 1TFR  

Rural Shanghai 

)( 2TFR  

1.371 1.255 1.356 

 

It is obvious from Table 3 that the 1986 total fertility rate of Shanghai (as a whole) was larger 

than the total fertility rates of both urban and rural shanghai. Table 4 shows the corresponding 

numerical values of the related factors. 
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Table 4. Numerical values of related factors, Shanghai, China, 1986 

1k  2k  21 kk +   k  
2

1

TFR

TFR
 

1

21

k

k−
 

1

2

1 k

k

−
 

0.657 0.403 1.060 0.060 0.926 0.908 1.176 

 

This is a case that meets criterion (c) of section 3, i.e. 
1

2

2

1

1

2

1

1

k

k

TFR

TFR

k

k

−
<<

−
. 

 

Now, let’s take a look at the age patterns of fertility of Shanghai in 1986 (Figure 4). The two 

(period) fertility curves of urban Shanghai and rural Shanghai intersect at around age 25. An 

interesting phenomenon from Figure 4 is that the age patterns of fertility of urban and rural 

Shanghai are both single-peaked curves, while the age pattern of fertility of Shanghai (as a 

whole) has two main peaks, which correspond to the rural peak (at age 23) and the urban peak 

(at age 26) respectively. The fertility curve of Shanghai (as a whole) has a local valley at ages 

24 and 25. 

 

Figure 4. The age patterns of fertility of Shanghai, China, 1986 

 

The means and the standard deviations of the age at childbearing are as follows: 

Shanghai 

Rural Shanghai 

Urban Shanghai 
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Table 5. Mean age at childbearing and standard deviation, 1986 

 Shanghai Urban Shanghai Rural Shanghai 

Mean age of 

childbearing 
26.20 27.65 24.35 

Standard 

deviation 
3.66 3.37 3.19 

 

Figure 5 shows the relative age structures of urban and rural Shanghai in 1986. 

 

Figure 5. Relative age structures of urban and rural Shanghai, China, 1986 

 

 

5. Summary 

 

In demography, the total fertility rate (TFR ) is a very important measure of period fertility. In 

this paper, we analyzed the relationship between the total fertility rate of a total population 

and the total fertility rates of two sub-populations. The analysis shows that the relationship is 

complex and a “paradox” may occur in the relationship. Although we have only discussed a 

scenario of dividing a total population into two sub-populations, the results of this paper 

should apply to situations with multiple sub-populations. 

Urban Shanghai - )(1 xu  

Rural Shanghai - )(2 xu  

Age 
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