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Abstract:  The widely used multilevel regressions in neighborhood research typically 
ignore potential between-neighborhood correlation due to underlying spatial process, and 
hence produce inappropriate inferences about neighborhood effects.  In contrast, spatial 
models make estimation and prediction over space by explicitly modeling the spatial 
correlations among observations in different locations.  A better understanding of the 
strength and limitation of spatial models as compared to multilevel models is needed to 
improve the research on neighborhood and spatial effects.  This research systematically 
compares model estimation and prediction for binary outcomes between spatial and 
multilevel models in presence of both within- and between-neighborhood correlations 
through simulations.  Preliminary results show that multilevel and spatial models produce 
similar estimates of fixed effects, but different estimates of random effects.  Both the 
multilevel and pure spatial models tend to overestimate the corresponding random effects, 
compared to a full spatial model when both non-spatial within neighborhood and spatial 
between-neighborhood effects exist. 
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INTRODUCTION 
 
Multilevel regression model is one of the most widely used methods in the research of 
neighborhood effects on individual outcomes (Dietz 2002; Diez-Roux 2000; DiPrete and 
Forristal 1994).  A multilevel model is able to correct for within-neighborhood 
correlation among individual observations and thus to provide unbiased standard error 
and efficient estimates for individual- and neighborhood-level predictors (Diggle, 
Heagerty, Liang, and Zeger 2002).  It also allows an assessment of within- and between-
neighborhood variations (Snijders and Bosker 1994) as well as how these variations are 
contributed by individual- and neighborhood-level predictors (Diez-Roux 2000).  
Nevertheless, it has been criticized for its incapacity to estimate independent 
neighborhood effects, at least with observational data (Diez-Roux 1998; Oakes 2004).  
Multilevel models typically ignore potential between-neighborhood correlation due to, 
for example, spatial diffusion process and assume independent observations in one 
neighborhood from those in another neighborhood, which may lead to overestimated 
statistical significance of neighborhood effects (Chaix, Merlo, and Chauvin 2005). 
 
Figure 1 (left) illustrates a hypothetical example of the assumption of within-
neighborhood correlation in multilevel models.  Each cell in the grid represents a 
neighborhood and its color indicates the average level (from low to high) of certain 
individual outcome shared by the observations from that neighborhood.  Within a 
neighborhood, each observation’s outcome deviates around the neighborhood’s mean.  
Neighborhood’s mean level of outcome varies from one to another, resulting in more 
similar outcomes among the observations from the same neighborhood than those from 
different neighborhoods (depicted as different colors across cells in Figure 1).  The 
seemingly random distribution of mean outcome at neighborhood-level reflects the 
assumption of between-neighborhood independence.  That is, the mean outcome is not 
more similar between two adjacent neighborhoods than that between two distant 
neighborhoods. 

[Figure 1 about here] 
 
In reality, however, between-neighborhood correlation may exist as a function of the 
distance between two nearby neighborhoods as stated in Tobler’s First Law of Geography 
(Tobler 1970), “Everything is related to everything else, but near things are more related 
than distant things.”  First of all, socioeconomic and political resources in a neighborhood 
are likely to be linked to those in adjacent neighborhoods within a large citywide system 
(Logan and Molotch 1987) which in turn may lead to distinct spatial patterns of structural 
differentiation in individual outcomes across neighborhoods.  Secondly, social behavior 
and interaction are not necessary restricted within one’s immediate neighborhood, 
especially when the neighborhood boundaries are defined in a way that does not coincide 
with one’s real-life experience such as census geography and postal code (Flowerdew, 
Manley, and Sabel 2008; Guo and Bhat 2007; Riva, Apparicio, Gauvin, and Brodeur 
2008; Tatalovich, Wilson, Milam, Jerrett, and McConnell 2006).  Instead, they may 
transcend neighborhood boundaries and thus be affected by or consequential to what 
happens in nearby areas (Sampson, Morenoff, and Gannon-Rowley 2002).  For example, 
Collective efficacy in a neighborhood has been found to benefit residents living in 
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adjacent neighborhoods (Sampson, Morenoff, and Earls 1999), while spatial proximity to 
poverty and violent crimes in adjacent neighborhoods has been associated with out-
migration from current neighborhood(Morenoff and Sampson 1997).  
 
Spatial models have been developed to make estimation and prediction over space by 
explicitly modeling the spatial correlations among observations in different locations 
(Diggle, Tawn, and Moyeed 1998).  One of the key goals in spatial analysis is to estimate 
and predict the spatial distribution of an outcome of interest across the study area based 
on observations at a discrete set of locations (Diggle, Jr., and Christensen 2003).  Such 
model estimation and prediction typically involve certain stochastic assumptions about 
distance-based correlations among observations at known locations and unknown values 
at prediction locations.  In addition to examining spatial distribution, spatial models also 
allow researchers to investigate associations between individual- and neighborhood-level 
predictors and outcome of interest while adjusting for non-independent observations 
(Chaix, Merlo, and Chauvin 2005; Chaix, Merlo, Subramanian, Lynch, and Chauvin 
2005; Dietz 2002).  
 
Figure 1 (right) illustrates a hypothetical example of the assumption of distance-decay 
correlation across neighborhoods in a spatial model.  In addition to within-neighborhood 
correlation (as indicated by cells of different colors), a spatial model assumes the strength 
of correlation between two locations declines as the distance between them increases, 
resulting in similar mean outcomes among nearby neighborhoods and hence clusters of 
neighborhoods with similar mean outcomes (as indicate by the color gradient color across 
the cells in Figure 1 right). 
 
Chaix and associates (Chaix, Merlo, and Chauvin 2005; Chaix et al. 2005) are among the 
first to compare the spatial approach with the multilevel approach for studying 
neighborhood effects on health.  Through empirical analyses of healthcare utilization in 
France (Chaix, Merlo, and Chauvin 2005) and mental health in Sweden (Chaix et al. 
2005), Chaix and colleagues demonstrated that multilevel models could fail to capture 
both measures of associations between neighborhood factors and residents’ outcomes and 
measures of unexplained variation in these outcomes across areas.  However, it remains 
unclear whether these results are only valid for these two specific data sources or can be 
generalized to other study settings.  In addition, they did not provide a thorough 
comparison of model performance in terms of both model estimation and prediction 
between spatial and multilevel models through a formal approach such as simulation 
analysis (Burton, Altman, Royston, and Holder 2006). 
 
Aided by advance in spatial techniques and increased availability of spatial data, 
researchers have become increasingly interested in the spatial dynamics beyond simple 
neighborhood-level variation (Dietz 2002; Logan, Zhang, and Xu 2010; Sampson, 
Morenoff, and Gannon-Rowley 2002).  A better methodological understanding of the 
strength and limitation of spatial models as compared to multilevel models is needed to 
help move forward the research on neighborhood and spatial effects.  In this paper, I seek 
to systematically compare model performance in estimation and prediction between 
spatial and multilevel models in presence of both within- and between-neighborhood 
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correlations through simulation studies.  I focus on models of binary outcome using logit 
and probit links because of their increased prevalence and popularity in neighborhood 
and spatial studies.  I also draw on empirical data to illustrate the application of the 
spatial approach which remains limited in the existing research on neighborhood effects 
and demonstrate its relative advantages compared to the multilevel approach. 
 
 
SPATIAL MODEL 
 
Diggle and colleagues (1998) are among the first to extend linear spatial model to 
accommodate nonlinear outcomes such as binary and count data.  Let pij denote the 
probability for an individual i in neighborhood j having a binary outcome.  Using an 
appropriate function such as logit or probit, a binary outcome can be associated to linear 
predictors as the following,  

��������	
 � �
 � ��	� � �	 � �	 
or 

���������	
 � �
 � ��	� � �	 � �	 
where β0 is the regular intercept, and Xijβ is the product of individual- and neighborhood-
level predictors and the corresponding unknown parameters.  Within-neighborhood 
correlation is captured by uj which is usually assumed to be a normally distributed 
random intercept with mean 0 and variance σu

2, known as the nugget in the spatial 
literature (Banerjee, Gelfand, and Carlin 2004).   
 
Distance-based between-neighborhood correlation is captured by the random effects sj 
which is also commonly assumed to be normally distributed in the following form, 

�~��0, ��
�H���� 

where σs
2 denotes the variance of the spatial random effects, known as the partial sill in 

the spatial literature (Banerjee, Gelfand, and Carlin 2004).  Dropping sj from the right 
hand side of the equations in (1) and (2) results in the conventional multilevel model 
known as random-intercept model.  On the other hand, dropping uj but keeping sj leads to 
a pure spatial model that incorporates only between-neighborhood but ignores within-
neighborhood correlations.   
 
The other H��� is a correlation matrix that specifies how the spatial correlation declines 
as the distance between two locations increases.  The geographical centroid (sometimes 
weighted by population distribution) of a neighborhood can be used as a proxy for the 
location of the observations from that neighborhood when individual location is unknown 
(Chaix, Merlo, and Chauvin 2005) or a large number of different locations are 
computationally too expensive to be fully incorporated (Gelfand, Latimer, Wu, and John 
A. Silander 2006).  Let dij denote the distance between the centroids of two 
neighborhoods i and j, a corresponding element in the correlation matrix takes the 
following form, 

�����	 �  �!�	, �� 
where ρ is typically chosen to be an isotropic function, assuming the correlation between 
two locations only depend upon their distance from each other but not on their relative 
orientations to each other.  The so-called decay parameter � controls the rate of decline 
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in the spatial correlation as the distance between two locations increases.  The distance at 
which spatial correlation drops to 5 percent and can be considered as “no longer existing” 
is known as the effective range in the literature (Banerjee, Gelfand, and Carlin 2004).  
Several isotropic functions have been proposed in the literature (see Chapter 2 in 
Banerjee et al. 2004).  A common choice is the exponential function as the following for 
its relatively simple form and hence relatively low computational cost and wide 
availability in statistical packages, 

�����	 � exp �&�!�	� 
Setting exp�&�!�	
 equal to 0.05 and solving the equation, it is straightforward to see 
that in this case, the practical range is approximately 3/�.   
 
For details on parameter estimation and prediction using either maximum likelihood 
estimation or Bayesian inference, I refer the reader to the work by Diggle and colleagues 
(Diggle, Tawn, and Moyeed 1998; Diggle and Jr 2007; Diggle, Jr., and Christensen 2003). 
 
 
SIMULATION ANALYSIS 
 
The simulation analysis here focuses on the case of only one independent variable at the 
individual and one independent variable at the neighborhood level.  K-fold cross-
validation (Kohavi 1995) is employed to assess model performance in terms of prediction.  
The entire simulation procedure can be summarized in the following steps: 
 
1.  An exponential spatial correlation structure is simulated using the geoR package in R 
(Ribeiro and Diggle 2001) with mean 0, partial sill σs

2, and decay parameter �.  The 
neighborhood structure is represented by an 8 x 8 grid with 64 neighborhoods in total 
(see Figure 2).   

[Figure 2 about here] 
 
2.  Neighborhood-level random effects are randomly generated from a normal 
distribution with mean 0 and variance σu

2 (i.e. nugget). 
 
3.  A neighborhood-level predictor (i.e. neighborhood-level fixed effects) is sampled 
from a standard normal distribution across 64 neighborhoods.  Within each neighborhood, 
an individual-level predictor (i.e. individual-level fixed effects) is also sampled from a 
standard normal distribution for 30 observations, resulting in a total number of 1,920 
observations.  The values of the two predictors are then multiplied by their associated 
regression parameters β and added together to obtain the linear combination of fixed 
effects. 
 
4.  For each observation, the values of fixed effects and both neighborhood and spatial 
random effects are summed up to obtain the full linear combination of predictors as in the 
right hand side of equation (1) or (2), which in turn is used to generate the binary 
outcome from a logistic or normal distribution depending on which link function to be 
used. 
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5.  An 8-fold cross validation is performed by partitioning a simulated dataset as 
described above into 8 subsamples, for each of which 8 neighborhoods are randomly 
selected without replacement to be removed. 1  The observations from the rest 56 
neighborhoods are used as the training data to fit regression models and make predictions 
for the missing data from the 8 left-out neighborhoods. 
 
A total number of 500 datasets are simulated for each set of parameter values.  Four 
models are fitted to each simulated dataset and compared, including a “naïve” model that 
ignores both within- and between-neighborhood correlations (referred to as Model 1), a 
multilevel model that adjusts for within-neighborhood correlation (referred to as Model 
2), a pure spatial model that adjusts for distance-based between-neighborhood correlation 
but ignores within-neighborhood correlation (referred to as Model 3), and a spatial model 
that adjusts for both within- and between-neighborhood correlations (referred to as Model 
4).  Model 1 mainly serves as a benchmark for assessing the other three models. 
 
Model estimation and prediction are carried out by using OpenBUGS version 3.2.1 (Lunn, 
Spiegelhalter, Thomas, and Best 2009), an open-source software package for performing 
Bayesian inference using a Markov chain Monte Carlo (MCMC) method known as Gibbs 
sampling.  To ensure model convergence, each model is fitted by using 3 MCMC chains 
with different starting values and each chain runs for 40,000 iterations with the first half 
as burn-in.  Each chain is thinned by storing the sampled parameter values from every 
60th iteration in order to reduce its autocorrelation, resulted in a total number of 1,000 
iterations from the 3 chains, from which the posterior distributions are summarized.  
Non-informative priors are adopted for all the unknown parameters, including a normal 
distribution N(0, 100) for the fixed effects (β), a uniform distribution U(0, 10) for the 
standard deviation of the random effects (σu and σs), and a uniform distribution U(0.1, 10) 
for the decay parameter (�). This approach is equivalent to having no strong prior beliefs 
about what the parameter values should be (Gelman and Hill 2007).   
 
Several performance measures are adopted to evaluate different models (Burton, Altman, 
Royston, and Holder 2006).  Bias is assessed by two measures.  The percentage bias (PB) 
is the difference, calculated as a percentage of the true value, between the average 
estimate and the true value.  The standardized bias (SB) is the same difference but 
calculated as a percentage of the standard error of the estimates.  Accuracy is assessed by 
the root-mean-square error (RMSE) which is a combined measure of bias and variability.  
Coverage is also assessed by two measures.  The coverage rate (CR) is the proportion of 
times the true parameter value falls within the estimated confidence interval.  The 
average width of confidence interval (AW) is the length between the average lower and 
upper bounds across the obtained confidence intervals from all the simulations. 
   
 
 

                                                           
1 Technically speaking, only the outcomes for the observations from the 8 selected 
neighborhoods are set as missing values, but the values of the two individual- and 
neighborhood-level predictors are kept. 
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PRELIMINARY RESULTS 
 
The true parameter values used to generate 500 simulations are as the followings: the 
regression intercept β0 = -0.5, the coefficient for the individual-level predictor β1 = 0.8, 
the coefficient for the neighborhood-level predictor β2 = -0.5, the variance for the 
neighborhood-level random effects (i.e. the nugget) σu

2 = 3, the variance for the spatial 
random effects (i.e. the partial sill) σs

2 = 3, and the decay parameter for the spatial 
correlation � = 3 such that the effective range is 1.  Preliminary results of parameter 
estimation for the four different models are presented in Table 1 (logit model) and 2 
(probit model). 

[Table 1 and 2 about here] 
 

Overall, the multilevel and spatial models (Models 2-4) have similar and better 
performance with respect to the estimates of the fixed effects (i.e. β0, β1, and β2), 
compared to the naïve model (Model 1).  In logit regressions (Table 1), for example, the 
average parameter estimates for β0, β1, and β2 are similar across Models 2-4, and much 
closer to their true values compared to the average estimates from Model 1.  Both the PB 
and SB for Model 1 are roughly at least twice as big as those for Models 2-4, suggesting 
greater bias in estimating the fixed effects in Model 1.  Interestingly, the RMSE is much 
smaller with respect to β0

 for Model 1 as compared to Models 2-4, indicating smaller 
variability for the former.  However, only about 12 percent of the confidence intervals 
from Model 1 cover the true value of β0, compared to approximately 50-90 percent from 
Models 2-4, although the Model 1 has a much smaller AW than Models 2-4.  
Nevertheless, the RMSE is bigger with respect to β1

 and β2 for Model 1 as compared to 
Models 2-4.  These results suggest that in general the naïve model produces biased 
estimates with greater variability, compared to the multilevel and spatial models. 
 
The performance of estimating fixed effects is generally the same between the multilevel 
and spatial models as suggested by their similar values of assessment of bias, accuracy, 
and coverage.  The main difference comes from the estimates of random effects.  With 
respect to the estimate of the nugget (σu

2), the average estimate from Model 2 (6.29) is 
much bigger than that from Model 4 (2.97).  Both the associated PB and SB values are 
also larger for Model 2 (46.21 and 115.2 respectively) than for Model 4 (31.54, and -
109.45 respectively).  The RMSE is also slightly bigger for Model 2 (1.84) than for 
Model 4 (1.28).  The confidence interval from Model 4 (CR = 0.87) is more likely to 
cover the true value of the nugget compared to that from Model 2 (CR = 0.66), though 
the width of the confidence interval is slightly bigger from Model 4 (AW = 4.32) than 
that from Model 2 (AW = 4.01).   
 
Turning to the estimates of spatial effects, the average estimate from Model 3 is bigger 
than that from Model 4 for both the partial sill (σs

2) and the decay parameter (�).  In 
addition, Model 4 produces less biased (according to its smaller values of PB and SB) 
and more accurate (according to its smaller value of RMSE) estimates of these two 
parameters compared to Model 3.  The confidence interval from Model 4 is more likely 
to cover the true values of these two parameters, though with a larger width, than that 
from Model 3.   
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Similar results as above are found for the probit regressions (see Table 2) with one 
exception.  Model 3 shows worse performance with respect to the estimates of the fixed 
effects as suggested by the greater values of PB, SB, RMSE, and AW, compared to 
Model 2 and 4, although the value of CR is about the same across Models 2-4.  In other 
words, Model 3 tends to have more biased estimates with greater variability regarding the 
fixed effects. 
 
To sum up, both multilevel and spatial models perform better in terms of parameter 
estimate compared to the naïve model.  Multilevel and spatial models produce similar 
estimates of fixed effects.  This means that adjusting for only within- or between-
neighborhood correlation is almost as good as adjusting for both types of correlation at 
estimating fixed effects.  In other words, ignoring one type of the correlation, regardless 
of which one, has little impact on estimating fixed effects.  However, only adjusting for 
one type of correlation does lead to biased and inaccurate estimates of random effects, be 
it non-spatial within-neighborhood or spatial between-neighborhood correlation.  This 
may have serious implications for research on neighborhood effects given the common 
practice of assessing neighborhood effects and between-neighborhood variation based on 
the parameter estimate of σu

2 (Diez-Roux 2004).  The simulation analysis here shows that 
σu

2 can be overestimated if the presence of spatial correlation is not incorporated into the 
model.  On the other hand, solely relying on spatial correlation without recognizing the 
existence of nonspatial within-neighborhood correlation (i.e. Model 3) may lead to 
overestimated spatial random effects.  Therefore, neighborhood analysis embedded 
within a large city-wide system should be carried out with caution. 
 
 
NEXT-STEP ANALYSIS 
 
Several additional analyses will be carried out to further compare model performance.  
First of all, the values of the regression parameters will be varied to examine whether 
model comparisons are robust against parameter specifications.  In particular, the 
variance of the spatial random effects will be set to be bigger than that of the 
neighborhood-level random effects as suggested by several empirical studies (Chaix, 
Merlo, and Chauvin 2005; Chaix et al. 2005). 
 
Secondly, k-fold cross validation will be performed to assess the predictive power across 
models.  Posterior predictive checks have been proposed as a goodness-of-fit test and 
diagnostic tool for discrete data regressions in Bayesian inference to overcome the 
difficulty in using other usual methods such as residual plots (Gelman, Goegebeur, 
Tuerlinckx, and Mechelen 2000).  For each simulated dataset, 8 subsample datasets will 
be created as described in the Step 5 of the simulation procedure.  Predictions will be 
made for the “missing” binary in the validation subsample based on the model fitted to 
the training data.  Comparison of the predicted values with the true values can be used to 
assess how accurately a predictive model will perform in practice (i.e. out-of-sample 
estimate) while adjusting for uncertainty in estimating the model parameters. 
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Finally, both the spatial and multilevel models will be fitted to an empirical dataset drawn 
from the Urban Transition Historical GIS Project (www.s4.brown.edu/utp) and linked to 
historical mortality data available from the New Jersey Department of Health.  This 
analysis helps to examine the validity of model comparison results with respect to real 
data rather than simulation and to demonstrate the strength of applying spatial models in 
sociological research. 
  
 
 
 
 
 

http://www.s4.brown.edu/utp
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Table 1.  Performance Measures for Evaluating Logit Models Fitted to 500 Simulated 
Datasets. 

Bias Accuracy Coverage 
TV AE PB SB RMSE CR AW 

β0 Model 1 -0.5 -0.25 50.99 52.88  0.55  0.12 0.19 

 Model 2 -0.5 -0.41 18.51 11.97  0.78  0.48 1.08 

 Model 3 -0.5 -0.45 10.32 6.29  0.82  0.91 3.09 

 Model 4 -0.5 -0.36 28.27 14.62  0.98  0.93 4.40 
β1 Model 1 0.8 0.44 45.44 -626.45  0.37  0.00 0.20 

 Model 2 0.8 0.69 13.45 -162.39  0.13  0.63 0.27 

 Model 3 0.8 0.69 13.56 -163.58  0.13  0.64 0.26 

 Model 4 0.8 0.69 13.35 -160.68  0.13  0.65 0.27 
β2 Model 1 -0.5 -0.28 44.33 130.96  0.28  0.20 0.20 

 Model 2 -0.5 -0.44 11.60 21.90  0.27  0.93 1.08 

 Model 3 -0.5 -0.44 11.96 23.95  0.26  0.94 0.98 

 Model 4 -0.5 -0.44 12.03 24.31  0.25  0.94 1.02 
σu

2 Model 2 3 4.39 46.21 115.20  1.84  0.66 4.01 

 Model 4 3 2.05 31.54 -109.45  1.28  0.87 4.32 
σs

2 Model 3 3 6.09 103.10 125.07  3.96  0.49 12.04 

 Model 4 3 5.46 81.96 60.26  4.76  0.97 21.81 
� Model 3 3 6.99 133.05 309.21  4.20  0.51 6.82 

 Model 4 3 4.41 47.09 120.18  1.84  1.00 21.81 
Notes: TV = true value; AE = average estimate; PB = percentage bias; SB = standardized 
bias; RMSE = root-mean-square error; CR = coverage rate; AW = average width of 95% 
confidence interval. 
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Table 2.  Performance Measures for Evaluating Probit Models Fitted to 500 Simulated 
Datasets. 

Bias Accuracy Coverage 
TV AE PB SB RMSE CR AW 

β0 Model 1 -0.5 -0.18 63.54 87.45  0.48  0.11 0.12 

 Model 2 -0.5 -0.49 2.97 1.60  0.93  0.49 1.32 

 Model 3 -0.5 -0.58 16.17 -5.61  1.44  0.87 3.53 

 Model 4 -0.5 -0.47 5.46 2.49  1.10  0.90 4.20 
β1 Model 1 0.8 0.33 59.22 -939.70  0.48  0.00 0.12 

 Model 2 0.8 0.81 0.76 9.95  0.06  0.93 0.23 

 Model 3 0.8 0.96 19.57 4.64  3.38  0.94 0.90 

 Model 4 0.8 0.81 0.97 12.81  0.06  0.93 0.23 
β2 Model 1 -0.5 -0.21 57.66 215.36  0.32  0.05 0.12 

 Model 2 -0.5 -0.52 4.81 -7.37  0.33  0.95 1.32 

 Model 3 -0.5 -0.62 24.62 -4.08  3.02  0.94 2.54 

 Model 4 -0.5 -0.53 6.70 -10.85  0.31  0.94 1.24 
σu

2 Model 2 3 6.29 109.52 157.08  3.89  0.27 6.78 

 Model 4 3 2.97 1.04 -2.34  1.33  0.98 6.49 
σs

2 Model 3 3 9.25 208.21 114.52  8.29  0.14 18.36 

 Model 4 3 7.13 137.60 79.93  6.61  0.91 25.88 
� Model 3 3 6.95 131.56 295.49  4.17  0.49 6.79 

 Model 4 3 4.44 48.14 115.40  1.91  1.00 25.88 
Notes: TV = true value; AE = average estimate; PB = percentage bias; SB = standardized 
bias; RMSE = root-mean-square error; CR = coverage rate; AW = average width of 95% 
confidence interval. 
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Figure 1.  Hypothetical Examples of Multilevel (left) and Spatial (right) Models. 
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Figure 2. A Simulation of Spatial Random Effects with Exponential Function (σs
2 = 3, 

� = 3, and effective range = 1). 
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