A DYNAMIC BIRTH-DEATH MODEL VIA INTRINSIC LINKAGE

Robert Schoen

3145 Turk Boulevard, \#103
San Francisco CA 94118 USA
PH: 415/386-2168
email: rschoen309@att.net

A DYNAMIC BIRTH-DEATH MODEL VIA INTRINSIC LINKAGE

Abstract

An analytically useful dynamic birth-death model is advanced based on Intrinsic Linkage, i.e. the linear relationship between Leslie matrix and population functions shown in $\mathrm{Eq}(1)$. The key parameter of the model, w, captures the essential contribution of the subordinate components of a population projection matrix, and enables population composition over time to be found from the sequence of past Leslie matrix intrinsic growth rates. When those intrinsic growth rates follow a polynomial, exponential, or cyclical pattern over time, model population composition can be expressed analytically in closed form. $\mathrm{Eq}(30)$ provides a simple sufficiency condition for the existence of demographically valid projection matrices. Three numerical illustrations show model values and relationships under metastable, cyclically stationary, and cyclically stable patterns of change. The Intrinsic Linkage approach extends current techniques for dynamic modeling, revealing new relationships between population structures and the changing vital rates that generate them.

KEY WORDS: birth-death models, Leslie matrices, dynamic populations, cyclical stability

A DYNAMIC BIRTH-DEATH MODEL VIA INTRINSIC LINKAGE

The dominant mathematical model in demography, the stable population, is based on constant age-specific rates of birth and death. In actual populations, age-specific vital rates regularly change over time, often substantially. The ability to model such changes, and to analytically specify their implications for how the size and age structure of a population change over time, remains a challenge for mathematical demography.

Previous work has begun to explore dynamic models, that is models with time-varying vital rates. Coale (1972) and Lee (1974) were pioneering works on birth-death models. Bongaarts and Feeney (2002) advanced a flexible dynamic mortality-only model. Schoen and Kim (1994 PAA) and Schoen and Jonsson (2003) developed the metastable (or quadratic hyperstable) model that generalized the stable model, allowing fertility to change exponentially over both age and time. Schoen (2006, Chapter 7) discussed several other approaches to modeling changing rates, including Intrinsically Dynamic and "hyperstable" models. Yet despite the progress to date, there is no generally applicable analytical solution for the age structure produced by an arbitrarily changing set of vital rates.

The present paper advances a new approach to dynamic modeling that is applicable to a broad range of vital rate trajectories. This "Intrinsic Linkage" approach is based on the intuitively plausible idea that the age composition of the time t population projection (or Leslie) matrix can be represented as a weighted average of the model population age compositions at times t and $t-1$. The Intrinsic Linkage assumption leads to new, analytically tractable relationships between the trajectory of Leslie matrix intrinsic growth rates and the size and age composition of the model at any point in time.

THE BASIC INTRINSIC LINKAGE EQUATIONS

Consider an n-age group discrete birth-death population model, and let $\mathbf{A}_{\mathbf{t}}$ be the population projection (Leslie) matrix that takes the model population from time $t-1$ to time t. Denote the intrinsic or dominant root (or dominant eigenvalue) of $\mathbf{A}_{\mathbf{t}}$ by λ_{t}, and let λ_{Pt} represent the growth rate of model population births (i.e. members of the first age group) from time $t-1$ to time t. Assuming no mortality before the end of childbearing, the intrinsic age composition implied by \mathbf{A}_{t} follows from λ_{t}. With one person in the first age group, there are $\lambda_{t}{ }^{-1}$ persons in the second age group, $\lambda_{t}{ }^{-2}$ persons in the third, and so on.

It is reasonable to assume that λ_{t}, the long term growth rate of births implied by \mathbf{A}_{t}, modifies $\lambda_{\mathrm{P}, \mathrm{t}-1}$ to produce λ_{Pt}. Letting that relationship be linear, there must be some scalar value, w_{t}, such that

$$
\begin{equation*}
\lambda_{\mathrm{Pt}}=\lambda_{\mathrm{t}}\left(1-\mathrm{w}_{\mathrm{t}}\right)+\lambda_{\mathrm{P}, \mathrm{t}-1} \mathrm{w}_{\mathrm{t}} \tag{1}
\end{equation*}
$$

$\mathrm{Eq}(1)$ must hold, as any number can be written as a linear combination of any 2 given numbers. Formally, one can always find w_{t} from the model and Leslie values (i.e. from $\lambda_{P, t-1}, \lambda_{t}$, and $\lambda_{P_{t}}$), hence $\mathrm{Eq}(1)$ applies to any population and w_{t} can be seen as a parameter that describes how λ_{t} and $\lambda_{\mathrm{P}, \mathrm{t}-1}$ yield λ_{Pt}.
$\mathrm{Eq}(1)$ can be readily cumulated over time to express λ_{Pt} in terms of the sequence of λ_{t} and w_{t} and the "time 0 " model value $\lambda_{\mathrm{P} 0}$. Straightforward algebra yields

$$
\begin{equation*}
\lambda_{P t}=\left[\lambda_{P 0} \prod_{j=1}^{t} w_{j}\right]+\sum_{j=1}^{t} \lambda_{j}\left(1-w_{j}\right)\left[\prod_{i=j+1}^{t} w_{i}\right] \tag{2}
\end{equation*}
$$

In a demographically realistic model, λ_{Pt} must be finite and positive, so the product of the w_{t} must be bounded at all times. With the population projection matrices being, as usual, nonnegative and primitive, weak ergodicity applies (Schoen 2006, Chap. 2) and the initial growth
and composition are eventually forgotten. Thus the first term on the right in $\mathrm{Eq}(2)$ must disappear as t becomes large, and the product of the w_{j} must become increasingly smaller, so that the sum in $\mathrm{Eq}(2)$ converges. $\mathrm{Eq}(2)$ is a generally valid expression that relates the time t growth rate of births in any model population to the w_{t} weights and the past sequence of Leslie matrix growth rates.

If parameter w is constant over time and t is large, $\mathrm{Eq}(2)$ is changed to a form that is no longer simply representational, and the Intrinsic Linkage relationship becomes

$$
\begin{equation*}
\lambda_{\mathrm{Pt}}=(1-\mathrm{w}) \sum_{\mathrm{j}=1}^{\mathrm{t}} \lambda_{\mathrm{j}} \mathrm{w}^{\mathrm{t}-\mathrm{j}}=(1-\mathrm{w})\left[\lambda_{\mathrm{t}}+\mathrm{w} \lambda_{\mathrm{t}-1}+\mathrm{w}^{2} \lambda_{\mathrm{t}-2}+\mathrm{w}^{3} \lambda_{\mathrm{t}-3}+\ldots+\mathrm{w}^{\mathrm{t}-1} \lambda_{1}\right] \tag{3}
\end{equation*}
$$

Eq (3) shows that at large t, the growth in the number of model births between times $t-1$ and t (or the relative size of the number in the first age group to that in the second at time t) is the sum of a convergent power series in w, where values of $|\mathrm{w}|<1$ to increasingly higher powers are applied to earlier period Leslie matrix growth rates. Since

$$
\begin{equation*}
1-\mathrm{w}=1 /\left[1+\mathrm{w}+\mathrm{w}^{2}+\mathrm{w}^{3}+\ldots\right] \tag{4}
\end{equation*}
$$

$\mathrm{Eq}(3)$ shows that λ_{Pt} is a weighted average of λ_{j} values, where the most recent λ_{j} have the greatest weight.

Equation (3) is a new result, and is significant as it provides an intuitively meaningful relationship between model and Leslie composition/growth rates. If the λ_{j} are constant, then $\lambda=$ λ_{Pt} and the model is stable. In general, the power series in $\mathrm{Eq}(3)$ describes how earlier λ_{j} get increasingly smaller weights, and thus become "forgotten" over time. If there is a regularity in the λ_{j} that allows an algebraic summation, then $\mathrm{Eq}(3)$ can provide a closed form relationship between the λ_{j} and λ_{Pj} at all time points.

RELATIONSHIPS UNDER INTRINSIC LINKAGE

Let us consider some relationships between patterned sequences of Leslie matrix roots and model population growth. Specifically, we consider cases where w is constant over time and the λ_{j} sequence is linear, quadratic, and metastable.

The case of Leslie matrices with linearly changing roots and constant w.

It is useful to rewrite $\mathrm{Eq}(3)$ as a difference in λ_{t} values using Eqs (3) and (4). That yields

$$
\begin{equation*}
\lambda_{P t}=\lambda_{t}+\sum_{j=1}^{t-1}\left(\lambda_{t-j}-\lambda_{t-j+1}\right) w^{t} \tag{5}
\end{equation*}
$$

Now let the λ_{j} sequence change linearly, i.e. let

$$
\begin{equation*}
\lambda_{\mathrm{t}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{t} \tag{6}
\end{equation*}
$$

for constants b_{0} and b_{1}. Then $E q(3)$ becomes

$$
\begin{equation*}
\lambda_{\mathrm{Pt}}=\lambda_{\mathrm{t}}-\mathrm{b}_{1} \mathrm{w} /(1-\mathrm{w}) \tag{7}
\end{equation*}
$$

Thus, when w is constant, λ_{Pt} changes linearly with λ_{t}, with the 2 growth rates separated by a constant amount at every time point.

To see how the growth rate of model population births, λ_{Pt}, varies with parameter w in the linear case, we can take the partial derivative of $\mathrm{Eq}(7)$ and write

$$
\begin{equation*}
\partial \lambda_{\mathrm{Pt}} / \partial \mathrm{w}=-\mathrm{b}_{1} /(1-\mathrm{w})^{2} \tag{8}
\end{equation*}
$$

If $\mathrm{b}_{1}>0$, i.e. when λ_{Pt} is increasing, then an increase in w implies a reduction in λ_{Pt}.
The case of Leslie matrices with quadratically changing roots.
Let λ_{t} change quadratically, i.e. let

$$
\begin{equation*}
\lambda_{\mathrm{t}}=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{t}+\mathrm{b}_{2} \mathrm{t}^{2} \tag{9}
\end{equation*}
$$

Then λ_{Pt} can be found using Eqs (3) - (5) and the Maple derived summation relationship

$$
\begin{equation*}
S_{2}=\sum_{j=1}^{t} b_{2} j w^{t-j}=\left[b_{2} t(1-w)-w b_{2}\right] /(1-w)^{2} \tag{10}
\end{equation*}
$$

The result is

$$
\begin{equation*}
\lambda_{\mathrm{Pt}}=\lambda_{\mathrm{t}}-\mathrm{wb}_{1} /(1-\mathrm{w})-\mathrm{wb}_{2}[2 \mathrm{t}(1-\mathrm{w})-(1+\mathrm{w})] /(1-\mathrm{w})^{2} \tag{11}
\end{equation*}
$$

Here, the difference between λ_{t} and λ_{Pt} changes linearly with time.
The $\lambda_{P t}$ associated with cubic and higher powers of change in λ_{t} can be found using the above approach, but at the price of more complex relationships. In principle, at least, $\mathrm{Eq}(3)$ can yield an explicit relationship for λ_{Pt} for any polynomial λ_{t}.

The case of Leslie matrices from a metastable population model.

The difference formulation of $\mathrm{Eq}(5)$ leads to an explicit solution for λ_{Pt} in the metastable model, that is the case where

$$
\begin{equation*}
\lambda_{\mathrm{t}}=\mathrm{ck}^{\mathrm{t}} \tag{12}
\end{equation*}
$$

and c and k are constants. When $\mathrm{k}=1$, the population is stable. It follows from $\mathrm{Eq}(3)$ that

$$
\begin{equation*}
\lambda_{\mathrm{Pt}}=\mathrm{ck}^{\mathrm{t}}[\mathrm{k}(1-\mathrm{w}) /(\mathrm{k}-\mathrm{w})] \tag{13}
\end{equation*}
$$

or that λ_{Pt} is ck^{t} times a constant factor [previously denoted λ_{s} by Schoen (2006:134)] that depends on w and on exponential growth parameter k. The constant w Intrinsic Linkage formulation thus leads to a new, closed form expression for λ_{s}, specifically

$$
\begin{equation*}
\lambda_{\mathrm{s}}=\mathrm{k}(1-\mathrm{w}) /(\mathrm{k}-\mathrm{w}) \tag{14}
\end{equation*}
$$

To consider how the metastable λ_{Pt} varies with parameter w , we differentiate $\mathrm{Eq}(13)$ with respect to w and find

$$
\begin{equation*}
\partial \lambda_{\mathrm{Pt}} / \partial \mathrm{w}=-\mathrm{ck}^{\mathrm{t}+1}(\mathrm{k}-1) /(\mathrm{k}-\mathrm{w})^{2} \tag{15}
\end{equation*}
$$

If $k>1$ so that λ_{Pt} is increasing over time, then an increase in w decreases λ_{Pt}. As in the linear case, a change in w moves λ_{Pt} in the opposite direction.

CYCLICALLY STABLE POPULATION MODELS WITH INTRINSIC LINKAGE
Cyclically stable populations arise naturally in a number of applications. Their analysis was pioneered by Skellam (1967), with significant work by Namboodiri (1969) and Tuljapurkar (1985; 1990). The Intrinsic Linkage approach is well suited to analyzing cyclical populations, and equations (2) and (3) yield new and explicit solutions for the λ_{Pt} trajectory when λ_{t} varies cyclically.

The case where cycle length is 2.

Consider the simplest case under $\operatorname{Eq}(2)$, where λ_{t} alternates in value between λ_{1} (when t is odd) and λ_{2} (when t is even). Then, with w_{1} associated with λ_{1} and w_{2} associated with λ_{2}, Eq(1) implies

$$
\begin{align*}
& \lambda_{\mathrm{P} 1}=\lambda_{1}\left(1-\mathrm{W}_{1}\right)+\lambda_{\mathrm{P} 2} \mathrm{~W}_{1} \\
& \lambda_{\mathrm{P} 2}=\lambda_{2}\left(1-\mathrm{W}_{2}\right)+\lambda_{\mathrm{P} 1} \mathrm{~W}_{2} \tag{16}
\end{align*}
$$

Using $\operatorname{Eq}(2)$ with t large, and summing the terms in λ_{1} and λ_{2} separately, gives the solutions

$$
\begin{align*}
& \lambda_{\mathrm{P} 1}=\left[\lambda_{1}\left(1-\mathrm{w}_{1}\right)+\lambda_{2} \mathrm{w}_{1}\left(1-\mathrm{w}_{2}\right)\right] /\left[1-\mathrm{w}_{1} \mathrm{w}_{2}\right] \\
& \lambda_{\mathrm{P} 2}=\left[\lambda_{2}\left(1-\mathrm{w}_{2}\right)+\lambda_{1} \mathrm{w}_{2}\left(1-\mathrm{w}_{1}\right)\right] /\left[1-\mathrm{w}_{1} \mathrm{w}_{2}\right] \tag{17}
\end{align*}
$$

Under Eq (3), with w constant, the solutions in Eq (17) reduce to

$$
\begin{align*}
& \lambda_{\mathrm{P} 1}=\left[\lambda_{1}+\lambda_{2} \mathrm{w}\right] /[1+\mathrm{w}] \\
& \lambda_{\mathrm{P} 2}=\left[\lambda_{2}+\lambda_{1} \mathrm{w}\right] /[1+\mathrm{w}] \tag{18}
\end{align*}
$$

with $\lambda_{\mathrm{P} 1}+\lambda_{\mathrm{P} 2}=\lambda_{1}+\lambda_{2}$.
The case where cycle length is 3 and w is constant.
When each cycle spans 3 intervals, the 3 constant w specifying equations are

$$
\begin{aligned}
& \lambda_{\mathrm{P} 1}=\lambda_{1}(1-\mathrm{w})+\lambda_{\mathrm{P} 3} \mathrm{~W} \\
& \lambda_{\mathrm{P} 2}=\lambda_{2}(1-\mathrm{w})+\lambda_{\mathrm{P} 1} \mathrm{w}
\end{aligned}
$$

$$
\begin{equation*}
\lambda_{\mathrm{P} 3}=\lambda_{3}(1-\mathrm{w})+\lambda_{\mathrm{P} 2} \mathrm{~W} \tag{19}
\end{equation*}
$$

The solutions for the growth rates of model births are then

$$
\begin{align*}
& \lambda_{\mathrm{P} 1}=\left(\lambda_{1}+\mathrm{w} \lambda_{3}+\mathrm{w}^{2} \lambda_{2}\right) /\left(1+\mathrm{w}+\mathrm{w}^{2}\right) \\
& \lambda_{\mathrm{P} 2}=\left(\lambda_{2}+\mathrm{w} \lambda_{1}+\mathrm{w}^{2} \lambda_{3}\right) /\left(1+\mathrm{w}+\mathrm{w}^{2}\right) \\
& \lambda_{\mathrm{P} 3}=\left(\lambda_{3}+\mathrm{w} \lambda_{2}+\mathrm{w}^{2} \lambda_{1}\right) /\left(1+\mathrm{w}+\mathrm{w}^{2}\right) \tag{20}
\end{align*}
$$

which implies $\lambda_{\mathrm{P} 1}+\lambda_{\mathrm{P} 2}+\lambda_{\mathrm{P} 3}=\lambda_{1}+\lambda_{2}+\lambda_{3}$.

The general case where cycle length is m and w is constant.

The above approach readily generalizes to cycle lengths of m intervals, where m is any positive integer. With w constant, the m specifying equations are

$$
\begin{gather*}
\lambda_{\mathrm{P} 1}=\lambda_{1}(1-\mathrm{w})+\lambda_{\mathrm{Pm}} \mathrm{w} \\
\lambda_{\mathrm{P} 2}=\lambda_{2}(1-\mathrm{w})+\lambda_{\mathrm{P} 1} \mathrm{w} \\
\cdot \tag{21}\\
\cdot \\
\cdot \\
\lambda_{\mathrm{Pm}}=\lambda_{\mathrm{m}}(1-\mathrm{w})+\lambda_{\mathrm{P}, \mathrm{~m}-1} \mathrm{w}
\end{gather*}
$$

Note in the first equation that λ_{Pm} precedes λ_{PI}. The straightforward solution can be written

$$
\begin{equation*}
\lambda_{\mathrm{P}_{\mathrm{j}}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{w}^{\mathrm{i}-1} \lambda_{\mathrm{j}-\mathrm{i}+1} /\left(\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{w}^{\mathrm{i}-1}\right) \tag{22}
\end{equation*}
$$

where the value of λ_{0} is taken to be λ_{m} [as in $\left.\operatorname{Eqs}(16)-(18)\right]$. As before, $\sum \lambda_{\mathrm{Pj}}=\sum \lambda_{\mathrm{j}}$, with the sums over j ranging from 1 to m .
$\mathrm{Eq}(22)$ shows the new Intrinsic Linkage solutions for population values in cyclically stable models. Under constant w, closed form solutions that are essentially truncated versions of $\mathrm{Eq}(3)$ link the growth in the number of model births to the intrinsic growth rates of each cycle's Leslie matrices.

SPECIFYING THE POPULATION PROJECTION MATRICES

The Intrinsic Linkage model is not complete until the underlying sequence of Leslie matrices is fully specified. The best way to approach the specification of $\mathbf{A}_{\mathbf{t}}$, the Leslie matrix that moves the time $t-1$ model population to time t, is to begin with models that have only 2 reproductive age groups.

Specifying the 2-age group Intrinsic Linkage Leslie matrix.

Let the 2 x 2 Intrinsic Linkage Leslie matrix be written in the form

$$
\mathbf{A}_{\mathbf{t}}=\left[\begin{array}{cc}
\lambda_{\mathrm{t}}\left(1-a_{t}\right) & \lambda_{\mathrm{t}}^{2} a_{t} \tag{23}\\
1 & 0
\end{array}\right]
$$

where again λ_{t} is the dominant eigenvalue of \mathbf{A}_{t} and a_{t} is the contribution to the number of model births from the second age group when the dominant eigenvalue is 1 . Schoen (2006: 138-39) shows that such a representation is always possible and describes how it can be implemented. With any number of age groups, the coefficients of the λ^{\prime} 's (here a_{t} and $\left(1-a_{t}\right)$) always sum to 1 . Strictly speaking, the model provides a "birth" trajectory, as all persons in age group 1 at time $\mathrm{t}-1$ survive to be in age group 2 at time t . Since $\lambda_{\mathrm{t}}>0$ and all of the elements of the Leslie matrix are non-negative, we must have

$$
\begin{equation*}
0 \leq a_{t} \leq 1 \tag{24}
\end{equation*}
$$

for a demographically valid population projection matrix.
Let us scale the model so that the population at time $\mathrm{t}-1$ is described by the vector

$$
\mathbf{x}_{\mathbf{t}-\mathbf{1}}=\left[\begin{array}{c}
1 \tag{25}\\
1 / \lambda_{\mathrm{P}, \mathrm{t}-1}
\end{array}\right]
$$

and the time t model population is given by

$$
\mathbf{x}_{\mathbf{t}}=\quad \lambda_{\mathrm{Pt}}\left[\begin{array}{c}
1 \tag{26}\\
1 / \lambda_{\mathrm{Pt}}
\end{array}\right]
$$

Eqs(23) - (26) must (and do) satisfy the matrix projection relationship

$$
\begin{equation*}
\mathbf{x}_{\mathrm{t}}=\mathbf{A}_{\mathbf{t}} \mathbf{x}_{\mathrm{t}-\mathbf{1}} \tag{27}
\end{equation*}
$$

Using those equations and the Intrinsic Linkage relationship of $\mathrm{Eq}(1)$, we can find a scalar equation from the first row of matrix $\mathrm{Eq}(27)$ and write

$$
\begin{equation*}
\lambda_{\mathrm{Pt}}=\lambda_{\mathrm{t}}\left(1-\mathrm{a}_{\mathrm{t}}\right)+\mathrm{a}_{\mathrm{t}} \lambda_{\mathrm{t}}^{2} / \lambda_{\mathrm{P}, \mathrm{t}-1}=\lambda_{\mathrm{t}}\left(1-\mathrm{w}_{\mathrm{t}}\right)+\lambda_{\mathrm{P}, \mathrm{t}-1} \mathrm{w}_{\mathrm{t}} \tag{28}
\end{equation*}
$$

Eliminating λ_{Pt} and using the last equality we find

$$
\begin{equation*}
\mathrm{a}_{\mathrm{t}}=\left(-\mathrm{w}_{\mathrm{t}}\right) \lambda_{\mathrm{P}, \mathrm{t}-1} / \lambda_{\mathrm{t}} \tag{29}
\end{equation*}
$$

Eq(29) provides the 2-age group Intrinsic Linkage solution for a_{t}, and thus all of the elements of $\mathbf{A}_{\mathbf{t}}$ are determined.

Because a_{t} must be nonnegative and $\lambda_{\mathrm{P}, \mathrm{t}-1}$ and λ_{t} are always positive, $\mathrm{Eq}(29)$ indicates that a demographically valid model for time t requires $w_{t}<0$. If w_{t} is 0 , then a_{t} is 0 and \mathbf{A}_{t} is not primitive. Since the maximum permissible value of a_{t} is $1, \mathrm{Eq}(29)$ implies the inequality

$$
\begin{equation*}
\lambda_{\mathrm{t}}>\left(-\mathrm{w}_{\mathrm{t}}\right) \lambda_{\mathrm{P}, \mathrm{t}-1} \tag{30}
\end{equation*}
$$

for a valid Leslie matrix. Combining Eqs(29) and (30), a valid time t model must have

$$
\begin{equation*}
0>\mathrm{w}_{\mathrm{t}}>-\lambda_{\mathrm{t}} / \lambda_{\mathrm{P}, \mathrm{t}-1} \tag{31}
\end{equation*}
$$

For a valid 2-age model, the choice of either w_{t} or λ_{t} is constrained by $\mathrm{Eq}(31)$. Still, at some specific time t, it is possible for the value of w_{t} to be less than -1 .

Models with w constant over time. If $\mathrm{w}=0$, then $\lambda_{\mathrm{t}}=\lambda_{\mathrm{Pt}}$ and $\mathbf{A}_{\mathbf{t}}$ is not primitive.
Moreover, in order to have convergence in Eq(3), we must have $-1<\mathrm{w}<0$. Using Eqs(3) and (4) with $w \neq 0$, we can write the inequality

$$
\begin{equation*}
\lambda_{\mathrm{t}}>(-\mathrm{w})(1-\mathrm{w})\left[\lambda_{\mathrm{t}-1}+\mathrm{w} \lambda_{\mathrm{t}-2}+\mathrm{w}^{2} \lambda_{\mathrm{t}-3}+\mathrm{w}^{3} \lambda_{\mathrm{t}-4}+\ldots\right] \tag{32}
\end{equation*}
$$

Eq(32) provides a necessary and sufficient condition for a valid constant w, 2-age group Leslie matrix.

In a constant w Intrinsic Linkage model with $-1<\mathrm{w}<0, \mathrm{Eq}(1)$ implies that λ_{t} is always between λ_{Pt} and $\lambda_{\mathrm{P}, \mathrm{t}-1}$. If $\lambda_{\mathrm{t}}>\lambda_{\mathrm{P}, \mathrm{t}-1}$, then $\lambda_{\mathrm{Pt}}>\lambda_{\mathrm{t}}$, while if $\lambda_{\mathrm{t}}<\lambda_{\mathrm{P}, \mathrm{t}-1}$, then $\lambda_{\mathrm{Pt}}<\lambda_{\mathrm{t}}$. In contrast, if $1>\mathrm{W}>0$, then λ_{Pt} is always between λ_{t} and $\lambda_{\mathrm{P}, \mathrm{t}-1}$.

With constant w and a known λ_{t} sequence, closed form solutions for a_{t} in terms of the λ_{t} may be possible. For example, consider the 2-age group metastable model of Eqs(12)-(14).
$\mathrm{Eq}(29)$ leads to

$$
\begin{equation*}
\mathrm{a}=(-\mathrm{w})(1-\mathrm{w}) /(\mathrm{k}-\mathrm{w}) \tag{33}
\end{equation*}
$$

with parameter a also constant over time. Since in most cases the metastable parameter k is close to $1, a \approx-\mathrm{w}$ and the demographic validity of the model can quickly be established.

Specifying the 3-age group Intrinsic Linkage Leslie matrix.

Leslie matrices with 3 reproductive age groups can provide a reasonable representation of most human population dynamics. Let the first row of 3-age group Leslie matrix $\mathbf{A}_{\mathbf{t}}$ be $\left[\left(1-a_{t}-b_{t}\right) \lambda_{t}, a_{t} \lambda_{t}^{2}, b_{t} \lambda_{t}^{3}\right]$, with, as usual, the matrix having ones on the subdiagonal and zeros elsewhere. Again we must have, $0 \leq a_{t}, b_{t} \leq 1$ and $\left(1-a_{t}-b_{t}\right) \geq 0$. The time $t-1$ model population can be scaled so that

$$
\begin{equation*}
\mathbf{x}_{\mathbf{t}-1}{ }^{\prime}=\left[1,1 / \lambda_{\mathrm{P}, \mathrm{t}-1}, 1 /\left(\lambda_{\mathrm{P}, \mathrm{t}-1} \lambda_{\mathrm{P}, \mathrm{t}-2}\right)\right] \tag{34}
\end{equation*}
$$

where the prime (') indicates the transposition from a column vector to a row vector.
The first row of projection $\mathrm{Eq}(27)$ then yields the equation

$$
\begin{equation*}
\left(-\mathrm{w}_{\mathrm{t}}\right) / \lambda_{\mathrm{t}}=\mathrm{a}_{\mathrm{t}} / \lambda_{\mathrm{P}, \mathrm{t}-1}+\mathrm{b}_{\mathrm{t}}\left[\left(\lambda_{\mathrm{t}}^{2}-\lambda_{\mathrm{P}, \mathrm{t}-1} \lambda_{\mathrm{P}, \mathrm{t}-2}\right) /\left(\lambda_{\mathrm{P}, \mathrm{t}-1} \lambda_{\mathrm{P}, \mathrm{t}-2}\left\{\lambda_{\mathrm{t}}-\lambda_{\mathrm{P}, \mathrm{t}-1}\right\}\right)\right] \tag{35}
\end{equation*}
$$

With 3 age groups there are 2 parameters, a_{t} and b_{t}, that are constrained by only one equation, i.e. Eq(35). As a result, a valid model may arise in many ways, and a_{t} and b_{t} are not fully determined by the Intrinsic Linkage constraint. That flexibility in the model makes it possible to have a value of w_{t} that is less than -1 or greater than 1 , as long as the sum in $\mathrm{Eq}(2)$ always converges.

Three points should be made. First, if $b_{t}=0$, then we again have the case of $E q(29)$. Hence $\mathrm{Eq}(31)$ (or $\mathrm{Eq}(32)$ if w is constant) provides a sufficient condition for a valid model, though it is no longer necessary.

Second, if w is constant over time, a long term valid Intrinsic Linkage model again requires that $-1<\mathrm{w}<0$. To see why, let us consider the model at time t , and assume that $\lambda_{\mathrm{P}, \mathrm{t}-1}$ and $\lambda_{\mathrm{P}, \mathrm{t}-2}$ are known. If $\lambda_{\mathrm{P}, \mathrm{t}-1}=\lambda_{\mathrm{P}, \mathrm{t}-2}$, then the population is stable (or $\mathbf{A}_{\mathrm{t}-1}$ is not primitive). If not, let us assume that $\lambda_{\mathrm{P}, \mathrm{t}-2}>\lambda_{\mathrm{P}, \mathrm{t}-1}$ (though the same line of argument holds if $\lambda_{\mathrm{P}, \mathrm{t}-2}<\lambda_{\mathrm{P}, \mathrm{t}-1}$). From $\operatorname{Eq}(34)$, for $\mathrm{w}>0$, a valid model requires that the second term on the right be negative, hence λ_{t} must be between $\lambda_{P, t-1}$ and $\lambda_{P, t-2}$ and greater than the geometric mean of $\lambda_{P, t-1}$ and $\lambda_{P, t-2}$. With $\mathrm{w}>0, \mathrm{Eq}(1)$ implies that λ_{Pt} must be between λ_{t} and $\lambda_{\mathrm{P}, \mathrm{t}-1}$. Now we are back to the starting scenario, but the gap between $\lambda_{\mathrm{P}, \mathrm{t}-1}$ and λ_{Pt} is substantially smaller than the gap that existed between $\lambda_{\mathrm{P}, \mathrm{t}-1}$ and $\lambda_{\mathrm{P}, \mathrm{t}-2}$. Over time, with $\mathrm{w}>0$, that gap must go to zero, and the population will either become stable or the population projection matrix will no longer be primitive. Since $\mathrm{w} \geq 0$ does not yield a valid long term model, we are left with $-1<\mathrm{w}<0$.

Third, because the 3-age group model has an additional degree of freedom, we can introduce an additional constraint, say one related to the Net Reproduction Rate (NRR). Following Lotka, the NRR can be thought of as the growth that occurs over a generation, as in the stable population relationship

$$
\begin{equation*}
\mathrm{NRR}=\exp (\mathrm{rT}) \tag{36}
\end{equation*}
$$

where r is Lotka's intrinsic growth rate and T is the length of a generation (Schoen 2006:11). A 3-age group model typically has the reproductive age groups $0-14,15-29$, and $30-44$, and age 30 is often close to the length of a generation. In the discrete case, with λ_{t} representing 15 years of growth from time $t-1$ to time t, we can write

$$
\begin{equation*}
\mathrm{NRR}_{\mathrm{t}}=\lambda_{\mathrm{t}}^{2}=\left(1-\mathrm{a}_{\mathrm{t}}-\mathrm{b}_{\mathrm{t}}\right) \lambda_{\mathrm{t}}+\mathrm{a}_{\mathrm{t}} \lambda_{\mathrm{t}}^{2}+\mathrm{b}_{\mathrm{t}} \lambda_{\mathrm{t}}^{3} \tag{37}
\end{equation*}
$$

Using Eqs(37), (1), and (27), we find that the parameters of $\mathbf{A}_{\mathbf{t}}$ are given by

$$
\mathrm{a}_{\mathrm{t}}=\left\{(-\mathrm{w}) \lambda_{\mathrm{P}, \mathrm{t}-1} \lambda_{\mathrm{P}, \mathrm{t}-2}\left(\lambda_{\mathrm{t}}+1\right)\left[\lambda_{\mathrm{P}, \mathrm{t}-1}-\lambda_{\mathrm{t}}\right]-\lambda_{\mathrm{t}} \lambda_{\mathrm{P}, \mathrm{t}-1} \lambda_{\mathrm{P}, \mathrm{t}-2}\right\} / \mathrm{DENOM}
$$

and

$$
\mathrm{b}_{\mathrm{t}}=\left\{\lambda_{\mathrm{P}, \mathrm{t}-2}\left[\mathrm{w} \lambda_{\mathrm{P}, \mathrm{t}-1}+\lambda_{\mathrm{t}}\right]\left[\lambda_{\mathrm{P}, \mathrm{t}-1}-\lambda_{\mathrm{t}}\right]\right\} / \text { DENOM }
$$

where

$$
\begin{equation*}
\text { DENOM }=\lambda_{t}^{2}\left[\lambda_{P, t-2}\left(\lambda_{P, t-1}-1\right)-\lambda_{t}\left(\lambda_{P, t-2}-1\right)\right] \tag{38}
\end{equation*}
$$

An analyst can thus start with a fixed w and a sequence of NRRs, and derive the accompanying sequences of $\lambda_{t} ' \mathrm{~s}, \lambda_{\mathrm{Pt}}$'s, and Leslie matrices.

Specifying the Intrinsic Linkage Leslie matrix for 4 or more age groups.

Leslie matrices with 4 or more age groups have relationships that parallel those in 3-age models. Eqs(31) and (32) still provide sufficient conditions for a valid Leslie matrix in the general and constant w cases, respectively. In equations that parallel $\mathrm{Eq}(35)$, there are additional terms on the right side, increasing the likelihood that a valid Leslie matrix exists. For example, in the 4-age case, there is an additional term of the form

$$
\left[\lambda_{\mathrm{t}}^{3}-\lambda_{\mathrm{P}, \mathrm{t}-1} \lambda_{\mathrm{P}, t-2} \lambda_{\mathrm{P}, \mathrm{t}-3}\right] /\left[\lambda_{\mathrm{P}, \mathrm{t}-1} \lambda_{\mathrm{P}, \mathrm{t}-2} \lambda_{\mathrm{P}, \mathrm{t}-3}\left(\lambda_{\mathrm{t}}-\lambda_{\mathrm{P}, \mathrm{t}-1}\right)\right]
$$

Still, in the constant w case, the same dynamic discussed after $\mathrm{Eq}(35)$ continues to operate, so in long term models the value of w must satisfy $-1<w<0$.

NUMERICAL ILLUSTRATIONS INVOLVING INTRINSIC LINKAGES

Here, numerical values for 3-age group Intrinsic Linkage models are presented for (i) a metastable model, (ii) a 3-cycle cyclically stationary model, and (iii) a 4-cycle cyclically stable model calculated from NRRs. Models with 3 reproductive age groups are used to simplify the presentation while preserving the essential population dynamics.

Values in a 3-age group metastable model.

The metastable model allows fertility to steadily increase or decrease, and can provide an analytical bridge between stable population regimes, such as in the transition to stationarity. Table 1 shows numerical relationships under two values of the constant Intrinsic Linkage parameter w, specifically -0.6 and -0.4 . Values for the metastable parameters are $c=1.02$ and $\mathrm{k}=1.005$, with Leslie matrix value b set at 0.05 .

Since the metastable population is growing, fertility values in the first row of the Leslie matrix increase over time, while the relative size of the population in the older age groups decreases. Leslie growth rate λ_{t} increases over time, as does $\lambda_{\mathrm{Pt}}=\lambda_{\mathrm{t}} \lambda_{\mathrm{s}}$. When w increases from -0.6 to -0.4 , there is a slight decrease in metastable growth factor λ_{s}, but over a 10 interval period the resultant difference in births is only that between 1.634 and 1.627 , a mere 0.4%. The change in w does have a substantial effect on age-specific fertility values, with the larger w associated with a much earlier fertility schedule. However, because the value of b was fixed, at the same time point the first row of both Leslie matrices had identical third elements.

Values in a 3-age group, 3-cycle cyclically stationary model.

A cyclically stationary population provides analysts with a flexible model for studying fluctuations in the absence of long term growth. The Intrinsic Linkage approach provides explicit relationships that facilitate the construction of such models.

Table 2 shows values for a 3-cycle, cyclically stationary, Intrinsic Linkage model with 3 age groups. For stationarity, we must have $\lambda_{\mathrm{P} 1} \lambda_{\mathrm{P} 2} \lambda_{\mathrm{P} 3}=1$, i.e. no growth over each cycle. Combined with $\mathrm{Eq}(20)$, the stationarity constraint enables the model to be solved directly for the λ_{Pt} and constant w , though the λ_{t} must be chosen carefully to allow a valid model. An easier approach is to choose a value of w in the broad range that satisfies the sufficiency condition in $\operatorname{EqS}(30)$ or (32), and solve for the λ_{Pt} and one of the λ_{t}. Table 2 does the latter, with $\lambda_{1}=0.9, \lambda_{2}=$ 1.1, and w set at either -0.8 or -0.4 . In the Leslie matrix, there is only one constraint on each pair of a_{j} and b_{j}. To simplify matters while insuring a valid model, b_{j} is always set at 0.02 .

Table 2 indicates that the choice of w has little effect on the calculated value of λ_{3}, but a definite impact on the values of the λ_{Pt}. The more negative value of w leads to large values for the a_{j}, and a concentration of fertility in the second age group. The less negative value of w is associated with a marked shift in fertility to the first age group. Because the cycle length is the same as the number of age groups, total population size is constant over time, and equals 3.0666 when $w=-0.8$ and 2.9185 when $w=-0.4$. Population vector $\mathbf{x}_{\mathbf{3}}$ is identical to $\mathbf{x}_{\mathbf{0}}$, and Leslie matrix \mathbf{A}_{4} is the same as $\mathbf{A}_{\mathbf{1}}$. Within a cycle, however, cohort size varies by up to 24% when $\mathrm{w}=-0.8$ and up to 19% when $\mathrm{w}=-0.4$. For both choices of w , the sum of the three λ_{Pt} equals the sum of the three λ_{t}.

Values in a 3-age group, 4-cycle cyclically stable model derived from NRRs.

Cyclical growth (or decline) is common, and cycles four intervals long are often associated with seasonal variations. Table 3 presents values from a 3-age group, 4-cycle constant w cyclically stable population where the growth rates are obtained from NRRs using $\mathrm{Eq}(37)$. Because the NRRs add a further constraint, the sufficiency condition in $\mathrm{Eq}(32)$ no
longer applies, and a valid model is not always possible. With the NRR values used here, i.e. $0.95,1.05,1.25$, and 0.85 , no valid model was found when w was -0.8 or less or -0.5 or more.

Table 3 shows Intrinsically Linked model values when w is -0.7 and -0.6 . When $\mathrm{w}=-0.7$, the λ_{P} values are consistently further from 1 than when $\mathrm{w}=-0.6$. Moreover, when $w=-0.7$, the a_{j} values are uniformly bigger and the b_{j} values uniformly smaller than when $w=-0.6$, signaling that a more negative w shifts fertility away from the highest age and toward the second age group. The effect is most dramatic in Leslie matrix $\mathbf{A}_{\mathbf{3}}$, where the fertility value in the second age group when $w=-0.6$ is quite small.

The cyclically stable population declines in size from cycle to cycle, as the product of the four λ_{j} is 0.93353 when $\mathrm{w}=-0.7$ and 0.97872 when $\mathrm{w}=-0.6$. Population vector \mathbf{x}_{4} is identical to $\mathbf{x}_{\mathbf{0}}$ times the product of the four λ_{j} 's. Between times 0 and 4 , total population size varies from 3.26 to 3.63 when $w=-0.7$ and from 3.19 to 3.44 when $w=-0.6$.

There is substantial variation in cohort size within each cycle. When $w=-0.7$, relative cohort sizes vary by over 45%, while when $w=-0.6$, they vary by 33%. Cohort NRRs vary even more, going from 0.49 to 1.66 when $w=-0.7$ and from 0.34 to 1.83 when $w=-0.6$. The NRRs of successive cohorts alternate between being substantially above replacement to being substantially below replacement.

SUMMARY AND CONCLUSIONS

The Intrinsic Linkage relationship in $\mathrm{Eq}(1)$ connects λ_{t}, the intrinsic growth rate of the time t Leslie matrix, to λ_{Pt} and $\lambda_{\mathrm{P}, \mathrm{t}-1}$, the model growth rate of births at times t and $\mathrm{t}-1$. The Intrinsic Linkage approach is built on the idea that it is plausible to represent λ_{t} as a linear combination of λ_{Pt} and $\lambda_{\mathrm{P}, \mathrm{t}-1}$. With Intrinsic Linkage, each λ_{Pt} can be expressed as a convergent power series in λ_{t} and the linear weight parameter, w_{t}.

When λ_{t} has a polynomial, exponential, or cyclical trajectory and w is constant over time, new closed form relationships between λ_{t} and $\lambda_{P t}$ emerge. The construction of Intrinsically Linked models is straightforward, and several illustrative numerical examples of cyclical and metastable models are presented.

Much of the demographic content of Leslie matrix $\mathbf{A}_{\mathbf{t}}$, of whatever size, appears to be embodied in a single number: eigenvalue λ_{t}. The dominant root of \mathbf{A}_{t} reflects not only intrinsic growth but, in the absence of mortality before the end of childbearing, the long term age composition as well. In determining the size and composition of the model population, much of the contribution of all the subordinate components of $\mathbf{A}_{\mathbf{t}}$ can be captured by Intrinsic Linkage parameter w. The analytical advantages of the Intrinsic Linkage approach flow from its focus on those two key measures.

In sum, the Intrinsic Linkage approach provides a new and flexible way to link population projection matrices with the age structure of observed (or model) populations. Intrinsic Linkage extends current methods for the dynamic modeling of birth-death models, including cyclically stable and cyclically stationary models, and affords new options for analyzing populations with changing vital rates.

REFERENCES

Bongaarts, J. and Feeney, G. 2002. How long do we live? Population and Development Review 28: 13-29.

Coale, A.J. 1972. The Growth and Structure of Human Populations. Princeton NJ: Princeton University Press.

Lee, R.D. 1974. The formal dynamics of controlled populations and the echo, the boom and the bust. Demography 34: 205-26.

Namboodiri, N.K. 1969. On the dependence of age structure on a sequence of mortality and fertility schedules: an exposition of a cyclical model of population change. Demography 6: 287-99.

Schoen, R. 2006. Dynamic Population Models. Dordrecht, The Netherlands: Springer.
Schoen, R. and Jonsson, S.H. 2003. Modeling momentum in gradual demographic transitions. Demography 40: 621-35.

Schoen, R. and Kim, Y.J. 1994. Hyperstability. Paper presented at the Annual Meeting of the Population Association of America, Miami, May 5-7.

Skellam, J.G. 1967. Seasonal periodicity in theoretical population ecology. Pp. 179-205 in Proceedings, Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV "Biology and Problems of Health" edited by L. Lecam and J. Neyman. Berkeley: University of California.

Tuljapurkar, S.D. 1985. Population dynamics in variable environments. VI. Cyclical environments. Theoretical Population Biology 28: 1-17.

Tuljapurkar, S.D. 1990. Population Dynamics in Variable Environments (Vol 85). New York: Springer.

Table 1. Numerical relationships in a 3-reproductive age group birth-death metastable model with Intrinsic Linkage, for 2 values of constant parameter w

$\underline{\text { Item }}$	$\underline{\mathrm{w}=-0.6}$	$\underline{\mathrm{~W}=-0.4}$
a	0.41747	0.22790
λ_{s}	1.00187	1.00142
λ_{1}	1.02510	1.02510
$\lambda_{\mathrm{P} 1}$	1.02702	1.02656
λ_{10}	1.07216	1.07216
$\lambda_{\mathrm{P} 10}$	1.07417	1.07369

First row of Leslie
[.54589, .43869, .05386]
[.74023, .23948, .05386]
matrix \mathbf{A}_{1}
First row of Leslie
[.57095, .47990, .06162]
[.77421, .26198, .06162]
matrix \mathbf{A}_{10}
Time 0 model
[1, .97856, .96237]
[1, .97900, . 96323$]$
population $\mathbf{x}_{\mathbf{0}}$
Time 10 model (1.63397) [1, .93561, .87974] (1.62672) [1, .93603, .88052] population \mathbf{x}_{10}

NOTES. The model is based on text $\operatorname{Eqs}(12)-(14)$ with $\mathrm{c}=1.02, \mathrm{k}=1.005$, and $\mathrm{b}=0.05$. Population growth over time was accumulated using the relationship that the product of k^{j}, j going from 1 to n equals $\mathrm{k}^{\mathrm{n}(\mathrm{n}+1) / 2}$. The value of parameter a in the 3-age metastable model is found from
$\mathrm{a}=\left\{\mathrm{bk}(\mathrm{k}-\mathrm{w})^{3}-(1-\mathrm{w})^{2}[\mathrm{w}(1-\mathrm{k})+\mathrm{b}(\mathrm{k}-\mathrm{z})]\right\} /\left\{\mathrm{w}^{2}(1-\mathrm{k})-\mathrm{k}^{2}(1-\mathrm{w})+(\mathrm{k}-\mathrm{w})\right\}$

Table 2. Numerical relationships in a Cyclically Stationary 3-reproductive age group, 3-cycle birth-death model with Intrinsic Linkage, for 2 values of constant parameter w

$\underline{\text { Item }}$	$\underline{\mathrm{w}=-0.8}$	$\underline{\mathrm{w}=-0.4}$
λ_{3}	1.03749	1.02517
$\lambda_{\mathrm{P} 1}$	0.92144	0.87623
$\lambda_{\mathrm{P} 2}$	1.24285	1.18951
$\lambda_{\mathrm{P} 3}$	0.87320	0.95944
a_{1}	.94148	0.33271
a_{2}	.61814	0.28422
a_{3}	.95108	0.46533
$\mathrm{~b}_{1}$.02	.02
$\mathrm{~b}_{2}$.02	.02
$\mathrm{~b}_{3}$.02	.02

First row of Leslie
[.03467, .76260, .01458]
[.58256, .26949, .01458]
matrix \mathbf{A}_{1}
First row of Leslie [.39805, .74794, .02662]
[.76535, .34391, .02662] matrix \mathbf{A}_{2}

First row of Leslie
[.03001, 1.02373, .02233]
[.52763, .48905, .02155]
matrix \mathbf{A}_{3}
Time 0 model
[1, 1.14521, .92144]
[1, 1.04228, .87623]
population $\mathbf{x}_{\mathbf{0}}{ }^{\prime}$
Time 1 model
(.92144)[1, 1.08526, 1.24285]
(.87623) [1, 1.14126, 1.18951]
population $\mathbf{x}_{1}{ }^{\prime}$
Time 2 model
(1.14521)[1, .80460, .87320]
(1.04228) [1, .84068, .95944]
population $\mathbf{x}_{\mathbf{2}}$

NOTES. The model is based on text Eqs(19)-(22) with $\lambda_{1}=0.9$ and $\lambda_{2}=1.1$. Since $\lambda_{\mathrm{P} 1} \lambda_{\mathrm{P} 2} \lambda_{\mathrm{P} 3}=1$, there is no population growth over each 3-interval cycle.

Table 3. Numerical relationships in a Cyclically Stable 3-reproductive age group, 4-cycle birthdeath model with Intrinsic Linkage, for 2 values of constant parameter w

Item	$\underline{\mathrm{w}}=-0.7$	$\underline{\mathrm{w}}=-0.6$
λ_{1}	. 97468	. 97468
λ_{2}	1.02470	1.02470
λ_{3}	1.11803	1.11803
λ_{4}	. 92195	. 92195
$\lambda_{\text {P1 }}$	1.17601	1.10784
$\lambda_{\text {P2 }}$. 91877	. 97481
$\lambda_{\text {P3 }}$	1.25752	1.20397
$\lambda_{\text {P4 }}$. 68706	. 75275
a_{1}	. 42408	. 41490
a_{2}	. 90853	. 87013
a_{3}	. 35493	. 03459
a_{4}	. 90669	. 44133
b_{1}	. 29165	. 29630
b_{2}	. 04518	. 06414
b_{3}	. 30456	. 45580
b_{4}	. 04855	. 29068
First row of $\mathbf{A}_{\mathbf{1}}$	[.27707, .40288, .27005]	[.28149, . $39416, .27436]$
First row of $\mathbf{A}_{\mathbf{2}}$	[.04744, . $95396, .04861]$	[.06735, . $91364, .06901]$
First row of $\mathbf{A}_{\mathbf{3}}$	[.38070, .44366, .42564]	[.56975, .04324, .63700]
First row of $\mathbf{A}_{\mathbf{4}}$	[.04127, .77069, .03805]	[.24707, .37513, .22779]
Population $\mathbf{x}_{\mathbf{0}}{ }^{\prime}$	[1, 1.45548, 1.15742]	[1, 1.32847, 1.10341]
Population $\mathbf{x}_{\mathbf{1}}{ }^{\prime}$	(1.17601)[1, .85033, 1.23764]	(1.10784)[1, .90266, 1.19915]
Population $\mathbf{x}_{2}{ }^{\prime}$	(1.08049)[1, 1.08841, .92551]	(1.07993)[1, 1.02584, .92598]
Population $\mathbf{x}_{3}{ }^{\prime}$	(1.35873)[1, .79522, .86552]	(1.30020)[1, .83059, .85205]

NOTES. The model is based on text $\operatorname{Eqs}(19)-(22)$ and (37) with the number in the first age group at time 0 scaled to 1 and $\mathrm{NRR}_{1}=0.95, \mathrm{NRR}_{2}=1.05, \mathrm{NRR}_{3}=1.25$, and $\mathrm{NRR}_{4}=0.85$. There is population decline over each 4-interval cycle, by a factor of 0.93353 when $\mathrm{w}=-0.7$ and by a factor of 0.97872 when $w=-0.6$.

