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Publishing annual life expectancy by sex to two decimals has become almost customary 

for countries with reliable death registration, and perhaps a target for other nations. The basis of 
this standard requires investigation. Following common practice in statistics, we define accuracy 
as the 95% confidence interval, and provide a simple method to compute the accuracy of 
calculations of life expectancy. We show that the accuracy of life expectancy is mainly 
determined by the level of mortality and the size of population. We indicate that, even if death 
registration and population count were perfect, the accuracy of life expectancy would not reach a 
year for 30% of all countries, 0.1 years for 63% of all countries, and 0.01 years for any country, 
even China or India.  

 
Life expectancy at birth (hereafter life expectancy, LE) is increasingly used as a broad 

measure of mortality, and applied to issues such as evaluating the development levels of countries 
(e.g., UNDP, 2010). Given this trend, it is practically important to ask how accurately the LE can 
be computed.  
 

International organizations estimate and publish the LE, for countries with or without 
death registration, in a variety of formats. The United Nations Population Division (UNPD, e.g., 
United Nations, 2009) publishes the LE by sex to one decimal, for 5-year periods and countries 
with 100 thousand or more populations. The United Nations Development Programme (e.g., 
UNDP, 2010) computes Human Development Index using the LE estimated by UNPD, but for 
two sexes together and to one decimal. The World Health Organization (e.g., WHO, 2005) 
estimates LE by sex to integer years, but for single-year periods. On the other hand, almost every 
country, or a sub-area of a country that computes life tables, publishes annual LE by sex to two 
decimals (e.g., Sweden, 2011; Japan, 2011). In general, international organizations view their 
estimates of LE as less accurate than that of the national statistical agencies. We have not been 
able to trace the origin of these standards nor their rationale. One might make the common sense 
argument that it is reasonable to expect that countries with good vital statistics can register all 
their deaths accurately to one day. Then we might expect the LE of these countries to be accurate 
to the second decimal, which corresponds to 0.01 years or 3.7 days.   

 
But this argument doesn’t answer to the question: can the LE for a year be computed 

accurately by sex to two decimals for any country? To answer this question, “accurate” needs to 
be defined. Following common practice in statistics, we define accuracy as the 95% confidence 
interval. In other words, an accuracy of 0.01 years implies that there is a 95% chance for the true 
LE to be in the range of 0.005 years around the computed LE. Under this definition, as we will 
show in this paper, the answer to the above question is negative: indeed LE cannot be accurately 
computed to 0.01 years annually by sex for any country, even China or India.  

 
 
 

                                                 
1 The views expressed in this paper are those of the author’s and do not necessarily reflect those of the 
United Nations.  
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Among the methods of estimating the accuracy of LE, Chiang (1984) provided the 
following approach. Assuming that the age-specific probabilities of survival are measured 
without bias and that deaths are binomially distributed within an age group, Chiang first derived 
the formula to compute the standard error of survival probability of an age group, which depends 
on the observed death rate and the number of death in this age group. Describing the change of 
LE by survival probabilities, Chiang obtained the formulas of computing the standard error of LE, 
which depends on the age-specific death rates and deaths. Using these formulas to the data of US 
females in 1975, Chiang showed that the standard error of LE is about 0.016, leading to 0.06 
years accuracy in terms of normal distribution. Chiang’s work indicated that when the death rates 
are assumed unbiased, population size is the main factor that determines the accuracy of LE. 
Moreover, even for the population of the US in 1975, the third largest one after China and India 
then, the LE could not be computed accurately to 0.01 years. The logic behind Chiang’s study can 
be described by the large number law: the chance of seeing the face from throwing a coin is 0.5 in 
theory, but in practice one can make it close to 0.5 only when number of throws is large.  

 
Assuming that the distribution of deaths within an age group is of Poisson rather than 

binomial, Silcocks et al (2001) provided another set of formulas to estimate the accuracy of LE. 
WHO (2005) applied a method similar to that of Silcocks to estimate the accuracy of LE for 
countries with complete death registration, and used a simulation method that is based on the 
uncertainty of model life table parameters to estimate the accuracy of LE for other countries. 
These methods, however, are complex (Silcocks et al, 2001). Nonetheless, Eayres and Willions 
(2004) applied the methods of Chiang and Silcocks to hypothetical small populations with age 
structure and death rates of English men in 1998-2000, and obtained more impressive results. 
They showed, for instance, the standard error of LE for a hypothetical population of 50 thousands 
is about 0.6 years, implying that the accuracy is more than 2 years. Their study suggested that, if 
the LE is required to be accurate to 2 years, then it would not be reachable for populations less 
than 50 thousand for one sex, or for countries with less than 100 thousand populations. These 
conclusions are informative, but they are based on either simulation for small populations or 
death rates and age structure of a chosen country. Can more general conclusions be obtained by 
some method easier to understand, and simpler to use? The answer is yes. 

 

A one-birth model  
 

We start from describing the life circle of one birth rather than the deaths in one age 
group. We denote the years this person lives by a random variable 1Y , where subscript 1 stands 
for the first person for the reason to be seen soon. Let the probability of surviving from birth to 
age x be 0px  and the probability of dying in the age group with starting age x be nxq + , where n is 

the length of the age group, then the probability of surviving from birth to age x and dying in age 
group x, namely }{ 1 xYP = , is 

 

nxxx qpxYP +=== 01 }{ δ ,  (1) 

 
where x is the average age of death in age group x, which is described in the appendix. When the 
x is chosen properly, how to cut the age groups should not matter, and hereafter we focus on the 
age groups of abridged life tables. In (1), the xδ is the density function of a probability 

distribution of death, which is obtained from observed death rates, and can be called the age 
pattern of death. It is worth noting that the basis of our method is this probability distribution over 
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all age groups. On the other hand, the method of (Chiang, 1984) or (Silcoks, 2001) is based on the 
probability distribution of deaths within each group.  
 

Given the xδ , the life expectancy of the person in question is 
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where ω is the starting age of the oldest age group, which is described in the appendix. 
Subsequently, the standard deviation of 1Y , or the standard error of estimating the LE of the one-

birth case, namelyS , is 
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One may note that zero death in some age group does not cause problem here, but yields infinite 
standard deviation in previous methods.     
 

As is shown by Edwards and Tuljapurkar (2005), the values ofS observed from 
seven developed countries in the last 50 years ranged from 14 to 20 years. Thus, estimating the 
LE from one person would result in unacceptable accuracy, and we move forward to a cohort 
model. 
 

A cohort model 
 
 Here we consider B persons born in one year and subject to the same mortality at all the 
ages, and denote the years that the ith person lives by a random variable iY . Then, the average 

years that the B persons live, namely the random variableY , is: 
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Now the situation is entirely different. First, alliY obey the same distribution and they are 

independent each other. Second, according to the central limit theorem, the distribution of Y will 
be close to a normal distribution no matter what is the empirical distribution of iY . And third, the 

number of iY refers to the annual births of a country that is sufficient larger than 25 or 30, bigger 

than which the distribution of Y will be satisfactorily close to a normal distribution (e.g., see 
Agresti and Finlay, 1997, p104). These features make the confidence interval referred by standard 
error valid. As a comparison, one may recall that in the previous methods the binomial or Poisson 
distributions differ significantly over age, and the number of these distributions is usually around 
20 and can hardly be larger.   
 
 We now turn to compute the expectation and standard deviation of Y . The expectation of 

Y is still (2), and the standard error of estimating LE is: 
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This is the standard error of estimating the LE for the B births, which is equivalent to observing 
the average age of deaths following the life circles of the B births. But in practice one can rarely 
follow the life circle of a cohort, and we therefore turn to a stationary population model.   
 

A stationary population model 
 
 A deterministic stationary population will be reached by any initial population, if for any 
year the number of births is B, the probabilities of death are xq , and there is no migration. The 

basis of the deterministic stationary population is the large number law, with which the 0.9 
probability of surviving to age 5, for example, is interpreted as 90% births will survive to age 5. 
Without applying the large number law, the deterministic stationary population becomes 
probabilistic, in which deaths occur independently between cohorts. This stationary population 
has the age structures of death and population that are identical to the above cohort model. Thus, 
observing the average age of deaths following the above cohort model is equivalent to doing so 
among the corresponding stationary population. More specifically, these deaths are to be 
observed among the stationary population with LEBP ⋅= persons in one year2. Denote the 
accuracy of the LE by Ac, (5) leads to 
 

PLESBSAc /96.1/96.12/ == .  (6)  
 

Now the question is whether the real population size can be used as P. From a statistic 
point of view, LE is the mean of the average age of deaths among a stationary population 

( ))(YELE = , and is independent with the size of the stationary population. Thus, in 
constructing deterministic life tables, the number of births is often chosen as 100 thousands for no 
clear reason, because the size of the stationary population does not matter when only a non-biased 
estimate of LE is interested. When the error of estimating LE is in question, however, the size of 
the stationary population, namely P, matters, and how to choose it is a question. We do not 
suggest simply use the real population size as P, because LE is the mean of the average age of 
deaths among a stationary population, not among a real population. We suggest, instead, choose 
the P as the size of the stationary population that is the closest to the real population. Let 

)(xpo be the observed population in age group x, and xL be the person-years in age group x of the 

stationary population, which are the commonly used life table function starting from 100 

thousand births. Our suggestion leads to minimize ∑
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2 In a probabilistic stationary population, the total person-years is a random variable and LEBP ⋅= is its 
expectation. 
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If the real population is stationary, (7) leads to the real population size. Accordingly, probabilistic 
life tables can be constructed, of which the size of a cohort at birth, namely ol , should be given 

by the equivalent stationary population’s births B(=P/LE), and it should not be arbitrarily taken as 
100 thousand for all the countries at all the times. Starting from the country-time-specific number 
of birth, Blo = , each person of the cohort will survive or die randomly according to the 

probability of death at each age, xq . Consequently, at each age, all life table variables have 

probability distributions, of which the central tendencies compose that of the equivalent 
stationary population or a deterministic life table. Therefore, the nature of life tables is 
probabilistic, and deterministic life tables are approximations for large populations. 

 
It is clear that when a cohort follows the age-specific death rates of a real population to 

survive, it survives over age randomly according to the age-specific variances determined by the 
underlying stationary population, which is often not the real population. In other words, a cohort 
cannot survive over age randomly according to the age-specific variances that are determined by 
populations other than the cohort itself. On the other hand, when the age-specific variances 
generated by an observed population are used to compute the variance of LE, as is implemented 
by Chiang’s method, the result is not the variance of the age of deaths in a cohort’s survival 
process, but something else that is hard to interpret. More specifically, Chiang’s formulas of 
computing the variance of LE can be viewed as a weighted average of age-specific variances, in 
which the weights are computed using the stationary population while the age-specific variances 
are calculated by observed deaths. Thus, there is a logic inconsistence in Chiang’s formulas, 
because a stationary population and observed deaths cannot often exist together. This 
inconsistence can be eliminated by using Chiang’s formula on the deaths of a corresponding 
stationary population rather than an observed population. By doing so, the result of Chiang’s 
formula will be identical to ours, as is shown in the appendix. Despite the logic inconsistence, 
there are facts that would make the results of Chiang practically close to ours. First, the variance 
of life expectancy is determined by the age pattern of death rather than population. Second, the 
age patterns of death are more similar between populations than are the age patterns of population. 
Thus, the results Chiang should be similar to ours, as will be shown by examples.  
   

The situation is simpler when ask what is the stationary population size in order to reach 
a certain Ac. It is  
 

.)]2//(96.1[ 2AcLESP =   (8) 
 
Note that a stationary population may exist in any length of period, the above accuracy can be 
reached by P persons in one year, or by P/t persons in t years, where t can be any positive number. 
Apparently, to reach the same accuracy, the persons in one year could be reduced to 1/5 if the 
period is extended to 5 years. On the other hand, however, the precision of referring time is 
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reduced similarly. Hereafter, the persons in one year are used in this paper, and are simply called 
the population size.  
 
 Given xq , S is obtained directly from (3), and then the Ac can be computed by (6) and (7), 

or the P for a required Ac can be calculated by (8). The basic indicator is S, which measures the 
uncertainty caused by finite population size when the death registration and population count 
were perfect. When there are errors in death registration and population count, the standard error 
in estimating LE should be larger than S, assuming that the that these errors are independent from 
that caused by finite population size. The above direct calculation, however, can hardly answer 
the question about how the Ac changes with LE in a more general sense. We therefore propose the 
indirect calculation below.    
 

The indirect calculation 
 

To maximize generality, we choose the West family of the Coale-Demeny (1966) 
model life tables (CDW) to represent the most common age pattern of mortality3. The values of 
S , computed at selected levels of LE, are shown in Table 1. 
 
Table 1. The values of S  computed using CDW 

LE 40 45 50 55 60 65 70 75 80 

Male S  29.9 29.7 28.9 27.5 25.4 22.4 18.8 15.5 13.8 

Female S  30.6 30.7 30.1 28.8 26.9 24.2 20.5 17.1 15.2 
 
It can be seen that the S declines with LE. The reason for this trend is understandable. There are 
two peaks in the distribution of death by age: one is at infant and another at old ages. With the 
increase of LE, the one at infant age drops and the other at old age raises, resulting in a decline of 
standard deviation. It is also apparent that the S of females are higher than that of males at the 
same LE, and the gap increases with LE. These patterns need further analysis. But, it is interesting 
to note that, the gap obscures or disappears when comparing the male S at a certain LE with the 
femaleS at the LE that is 5 years higher.    
      

Using the values of S in table 1 and (6)-(7) or (8), the Ac, or the P for required Ac can be 
computed analytically according to the levels of LE (with some interpolation when the LE does 
not end with 0 or 5), which we call the indirect calculation. Another application of the indirect 
calculation is to investigate how the P for a required Ac changes with LE, of which we show the 
results for Ac=1 in Figure 1.  

 

                                                 
3 Other model life tables could also be utilised when there is reason to do so. 
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Figure 1. The Size of Population for Ac=1
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 It can be seen that the P for Ac=1 first rises when LE is lower than 50, and then drops 
when LE is higher than 55. This is because, as is shown in (8), the P for required AC is a function 

of LES 2 , in which the S declines with LE, but together they show a non-monotonous 

trend.  
For countries without direct measure of xq , indirect estimate of LE are often obtained by 

using model life tables on surveyed child and/or adult death rates. Assuming that the errors 
caused by indirectly estimating LE are independent from the errors caused by finite population 
size, the values of S obtained by the indirect calculation could be viewed as the lower bounds for 
countries without direct measure of xq .  

 
Table 1 and (8) could provide approximate but informative conclusions, by taking 

the LE as 70 years for males and 75 years for females, roughly the median levels4 of the 
all the countries in 2005-2010 (United Nations, 2011). In order for the LE to be accurate 
to 1 year, the population size should be larger than 0.38 

( ))]2/1/(708.18*96.1[ 2= million for males and 0.34 million for females, or the total 
population should be 0.76 millions assuming the numbers of male and female are equal. 
In 2010, about 30% of all the countries5 in the world had a size of population less than 
0.76 million. Thus, for these countries, even if their death registrations and population 
counts were perfect, the computed LE would not be accurate to one year, and the 95% 
confidence intervals would cover different values of the last integer of the computed LE. 
Further, requiring the LE to be accurate to 0.1 years will raise the population size to 76 million, 
fewer than which and more then 0.76 million there were 63% countries in 2010. For these 
countries, the 95% confidence intervals would cover different values of the first decimal of the 
computed LE. Furthermore, requiring LE to be accurate to 0.01 years would need the size of 
population to reach 7.6 billion, which was bigger than the population size of the world in 
2010. Thus, even for the left 7% countries with more than 76 million populations, the LE is 
accurate to 0.1 but not 0.01 years.  

                                                 
4 Taking from the 196 countries or areas with 100 thousand or more populations. 
5 Including the 34 countries or areas with less than 100 thousand populations, and assuming the distribution 
of the LE among these countries is similar to that of the others. 
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For about half of the countries, the LE are higher than the median, the required 

population size for the accuracy to reach 1 year, for example, is therefore smaller than 0.76 
million, and hence the effect is to reduce the “30%” mentioned above. But there are other half 
countries with LE lower than the median, which bring an opposite effect. Thus, the above 
conclusions are inexact because the levels of LE differ among countries, but they are approximate 
because the effects from different LE should cancel each other. We should also mention that 
these conclusions are for annual LE. For the LE in 5-year periods, the required population size 
could be reduced to 1/5.   

 
Although the indirect calculation is approximate in terms of using model rather than real 

life tables, it is useful for countries without direct measure of xq . According to the WHO (2007), 

two-thirds of annual deaths are not registered. For countries without reliable death 
registration, the xq could only be computed at some census years. 

 

Examples and discussion 
      

How does the indirect calculation perform? We compare its results with the previous 
studies. In the study of Eayres and Willions (2004), the standard errors of LE are computed using 
the xq of English men in 1998-2000 (of which the LE is 75.42) and 6 hypothetical population 

sizes, which are 0.5, 1, 5, 10, 25, 50 thousands. For each population size, the age structure is 
taken from the English men in 1998-2000, and 30 standard errors of LE are computed, as are 
shown by the cycles in Figure 2. These 30 standard errors differed by using the methods of 
Chiang or Silcock, numerical computing or random simulating, the last age group starting at age 
85 or 95, and 5-year or 10-year age group. For comparison, we use the indirect calculation 
with 1.17=S , which is chosen from table 1 at LE=75, the closest integer to the LE of English 
men in 1998-2000.  

 

Figure 2. The Standard Error of Life Expectancy of Males: 
Curve(Indirect Calculation), Circles(Eayres and Willions)
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Eayres and Willions showed, in Figure 2, that the standard error of LE declines 

nonlinearly with P. The indirect calculation explained that this function is proportional to P/1 .  
 

Now let us imagine a male population with the size of 50 thousand, and assume that 
perfect registration and calculation lead to LE=75.42, where the “2” is a result of rounding up 
following the customary standard. Is the second decimal accurate? And if not, what should be 
done? To answer these questions, we first find17≈S according to Table 1, and 
then 28.12/ =Ac according to (6). We recommend rounding up the Ac/2 to its largest non-zero 
digit which is 1, and correspondingly the 75.42 to 75, then the LE is expressed as 75±1, reflecting 
the fact that the last integer is inexact. This example showed a case that the LE is inaccurate to 1 
year, and the decimals could be misleading.    
 

We now turn to an application of the direct calculation. Using the xq and the female 

populations by age of the US in 1975, (7) produces the P as 114 millions, which is about 3.6% 
more than the actual population size. Further, (6) yields Ac/2=0.0289, and the indirect calculation 
that requires only the real population size and LE gives Ac/2=0.0271. Compared to that of 
Ac/2=0.0305 by Chiang’s method, the direct calculation makes a difference about 0.0016 years. 
This difference is caused mainly by the age structures of the population, because the direct 
calculation counts the ages of death among a stationary population, while Chiang’s method does 
so among an observed population. A comparison of the two age structures is shown in Figure 3.1. 
It is apparent that the baby boom and bust caused a significant difference between the two age 
structures. Compared to the difference between the age structures of population, the 0.0016 years 
difference between the values of Ac is small. 

 
 

Figure 3.1. The Age Patterns of the US 
Female Population, 1975
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Figure 3.2. The Age Patterns of Female 
Death
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How can the results between the methods of ours and that of Chiang be so close? We 

discuss some plausible reasons below. First, because the age pattern of death is determined not 
only by the age structure of population, but also regulated by the age pattern of mortality, the 
difference between the age patterns of death should be smaller than that between the populations, 
as can be seen by comparing in Figures 3.1 and 3.2. And because the CDW represented the most 
common age pattern of mortality, its age pattern of death should also be similar to the actual or 
the stationary one, as is also shown in Figure 3.2. Second, the variance of estimating LE is 
determined directly by the age pattern of death instead of population. Thus, the closeness between 
our results and that of Chiang is comprehensive.  
 

Finally, for US females in 1975, about 111 millions then, the LE cannot be to 0.01 years, 
and it should be displayed as LE=76.65±0.03 years, an example that the first decimal is accurate 
but the second is not. The accurate first decimal suggests a concise format: the LE can be 
expressed as 76.7 years, with 95% sure that the last digit is exact. This conclusion was produced 
by a complex method using data on age-specific mortality and population, and it could be 
provided now by a simple method using data merely on the LE and total population. Furthermore, 
for countries with less population or higher levels of mortality, the LE can only be computed less 
accurately. We therefore suggest evaluate the accuracy when computing or estimating a LE. 

 

Appendix 
 
(1) The average age of deaths in an age group 
 
 As Eayres and Willions (2004) indicated, the average age of deaths in age group x, 
namelyx , is determined by assuming that the deaths are evenly distributed in one age group in 
Chiang’s method, or by assuming that the death rate is constant in one age group in Silcock’s 
method. It is more convenient to rewrite xaxx += , where xa is a commonly used life-table 

function, namely the mean number of person years lived by the deaths in age group x. In fact,  
Chiang’s assumption leads to xa being at the middle of the age group with length n, and Silcock’s 

at the first half of the age group. Although these assumptions make little difference in computing 
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LE, they are too simple to be consistent with the qualitative features that xa should follow. These 

features are described, for instance, by Preston, Heuveline and Guillot (2001, p44), as below.  

First, xa should be smaller than 
2

n
 at infant and child ages. This is because, when the xm  

(the death rate at age group x) is small and declines with age, more deaths should occur in the 

first half of the age interval. It is also clear that xa should be larger than 
2

n
 at adolescent and 

adult ages. This is because when xm increases with age, more deaths should appear in the second 

half of the age interval. At old ages, xa should be smaller than 
2

n
, because xm is high so that 

survivors decline quickly with age.  
 
Among the formulas of estimatingxa , we recommend use the Greville (1943) formula as 

below: 
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One may exam that Greville’s xa satisfy the qualitative features. For ages 0 and 1-4 years, the 

Greville formula does not apply, and we use the empirical formulas of the CDW as below:  
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where the parameters are:  
 

0b  1b  00c  01c  10c  11c  

Male .33 1.352 .045 2.684 1.651 -2.816 
Female .35 1.351 .053 2.8 1.522 -1.518 
 
(2) The oldest age group 
 
 For the oldest age group starting at ageω , traditional methods assume that the life 
expectancy at ageω  is +ωm/1 , where +ωm is the crude death rate over ageω . This 

assumption requires that the population at ages over ω  is stationary, which could lead to large 
errors. We use the xm at ages 80-99 years to build a logistic model (Thatcher, Kannisto, and 

Vaupel, 1998), in which the xm converges to 1 when x goes to infinite. This model uses he xm at 

ages 80-99 years to infer that at 100 years and older, and hence is more stable than using direct 
data that suffer severe fluctuations caused by small population size. We stop our life tables at age 
130, at which there is virtually no survivor. 
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(3) The variances of LE computed from observed and stationary deaths 
      

When the population is stationary, Chiang’s variance of estimating life 
expectancy at birth for an observed population, )( 0eVO , reduces to variance of life 

expectancy of a stationary population )( 0eVS , which can be indicated below using 

simplified formulas that neglect the details of computing the mean age of death within an 
age interval. 
   

First, let the probability of surviving from birth and age i-1 to age i be il  (with 

10 =l ) and ip , life expectancy at birth can be simplified as   

iii ppplllle ......,...1 21210 =+++++=  

 
Then the (4.8, p162) of Chiang becomes 
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Therefore, combining the (2.2, p163) and (4.10, p163) of Chiang, )( 0eVO is simplified as 
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where iD  and iq are the number of death and the probability of death, respectively, in age 

interval ),1[ ii − . 
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 We now turn to using continues version and a life-table function ∫
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)( 0eVS  is the continues version of (5). 
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