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Abstract

Spatio-demographic data sets are increasingly available worldwide, permit-
ting ever more realistic modeling and analysis of social processes ranging from
mobility to disease transmission. The information provided by these data sets
is typically aggregated by areal unit, for reasons of both privacy and admin-
istrative cost. Unfortunately, such aggregation does not permit fine-grained
assessment of geography at the level of individual households. In this paper,
we propose to partially address this problem via the development of point pro-
cess models that can be used to effectively simulate the location of individual
households within small areal units.
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1 Introduction

Spatio-demographic data sets are increasingly available worldwide, permitting ever
more realistic modeling and analysis of social processes ranging from mobility to dis-
ease transmission. The information provided by these data sets is typically aggregated
by areal unit (e.g., the State, County, Tract, Block Group, and Block hierarchy of
the U.S. Census), for reasons of both privacy and administrative cost. Unfortunately,
such aggregation does not permit fine-grained assessment of geography at the level
of individual households, a scale that is potentially important for accurate modeling
of micro-social processes such as transmission of disease between households, daily
mobility patterns, or patterns of interpersonal contact. While the potential to model
such phenomena across large geographical areas thus exists, efforts are hampered by
a lack of data on household location.

In this paper, we propose to partially address this problem via the development of
point process models that can be used to effectively simulate the location of individual
households within small areal units. Given basic information such as number of
households, general pattern of land use, and/or population of neighboring units, our
objective is to identify a probability distribution over household locations within a
polygonal region whose average spatial properties reflect the corresponding properties
of the unobserved true household distribution in that region. Examples of targeted
properties include standard point process descriptives (Diggle, 2003; Ripley, 1988),
such the mean nearest neighbor distance, measures of spatial clustering (e.g. the F
and G functions), mean K function value, et cetera. While the resulting distributions
will not reproduce household locations with perfect fidelity, the approximations may
nevertheless prove adequate for modeling of basic social processes.

While this problem can be approached in many ways, our focus within this paper
is on the application of simple, scalable models that require no extra information
(beyond areal unit and household count) from the analyst. Such models can be
employed in virtually any setting, and are a natural starting point for any more com-
plex modeling effort. To that end, we begin with two baseline models – a constant-
intensity N -conditioned Poisson process, and a low-discrepancy sequence model –
that incorporate only population density. We then extend the density-based models
by incorporating additional information from the areal units themselves, using an
inhomogeneous Poisson framework in which households are more likely to be found
near polygonal borders (a common phenomenon in the observed data). To evaluate
these simple point process models, we compare their behavior with observed house-
hold location distributions from three different communities. Test samples consist of
household location data from Portland, OR, Deschutes County, OR, and Irvine, CA1,
with areal units given by the 2000 U.S. Census. All modeling is performed in R (R
Development Core Team, 2010). Our test cases include examples of urban, suburban,

1Data from Deschutes County GIS office; City of Portland, OR GIS office, and Irvine, CA GIS
Office.
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and rural settings, with varying spatial scale and levels of population density.
Evaluation of the suggested point processes on our three communities suggest

that that simple models can provide quite reasonable approximations to household
location distributions for small areal units. Performance degrades substantially for
larger units, although the inhomogeneous model shows some potential within more
urbanized regions. Practical suggestions are given for the use of these and related
point processes within large-scale simulations, and for applications of this technique
to settings beyond the U.S. (and the developed world more generally).

2 Human Settlement Patterns and Baseline Mod-

els

Human settlement patterns play an important role in shaping human interaction and
the demographic processes which result. A classic example is that of marriage in
Western societies: couples in such societies rarely marry without prior meeting and
extensive face-to-face interaction, and marriage is thus disproportionately propin-
quitous (Bossard, 1932). Many demographic processes, such as mortality, fertility,
and mobility are also influenced by human settlement patterns (see, e.g. Binka et al.,
1998; Freeman and Sunshine, 1976; Guilmoto and Rajan, 2001); however, exploiting
such geographical information is frequently limited due to difficulty of acquisition.
For example, in the United States information on population within aggregate areal
units is largely available (e.g., via the US Census), but the coordinates of individu-
als and households are unavailable due to privacy concerns. There is thus a distinct
need for a methodology to generate household (or individual) distributions over small
scale areal units such as US Census geography, so as to inform statistical models
agent-based simulations, and the like.

Adding to the difficulty of this problem is the need for plausible models to be
easily computable. For instance, the year 2000 US census reports population in over 8
million blocks, themselves organized into well over 50,000 tracts (U.S. Census Bureau,
2001). Applying household location models at national or regional scales thus requires
simulation of location distributions for large numbers areal units, making efficiency
an important concern. In addition to computability, models to be used in a range of
settings should be simple, robust, and require minimal information inputs on the part
of the analyst. (For instance, a household location model requiring detailed street
maps may be of limited use in historical applications, or in countries for which such
maps are not readily available.) Such concerns motivate the initial consideration of
highly minimal models, that employ as little information as possible, and that can
be easily simulated for large numbers of areal units. Following Mayhew (1984), we
regard baseline models (and minor extensions thereof) as a natural starting point. By
beginning with basic, readily available information such as counts of households and
areal unit boundaries, we first construct models that treat household placement as
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conditionally uniform, subsequently modifying this assumption by introducing higher
“evenness” in placement, and then by allowing household location probability to be
affected by the geometry of the areal unit in which it resides. To the extent that
the resulting models produce household distributions whose properties approximate
those observed in real settings, we regard them as adequate proxies with respect to
those properties. Where these simple models fail, they may nevertheless be used
as a starting point for building more complex models (e.g., models with inter-point
interaction, or additional covariates) for particular applications.

3 Background

Increasingly, large scale archival data sets containing administrative borders and pop-
ulation or household counts are available to demographic researchers (e.g., IPUMS:
Minnesota Population Center, 2011; U.S. Census Bureau, 2001). This form of data,
and the study thereof, is often known as spatial demography or the formal demo-
graphic study of areal aggregates (Voss, 2007). Most such data sets, however, rarely
contain point location for individuals or households because of privacy and safety
concerns. This is not a problem for many macro-level analyses such classic demo-
graphic projection; however, for more micro-social processes such as transmission of
disease between households, daily mobility patterns, or patterns of interpersonal con-
tact require more detailed knowledge of household placement. Given that it is often
difficult and sometimes impossible to obtain exact household locations, an alternative
approach is necessary. One solution is to develop a series of point process models that
simulate the individual household distribution for these small areal units with known
statistical properties. Given basic information such as number of households, general
pattern of land use, and/or population of neighboring units, the general objective
is to identify a probability distribution over household locations within a polygonal
region whose average spatial properties reflect the corresponding properties of the
unobserved true household distribution in that region.

3.1 Spatial Data

Spatial information associated with spatio-demographic data includes, but is not
limited to, points (single locations, e.g., a house), lines (e.g., a road), and polygons
or areal units (e.g., a Census Block). Typically, Geographic Information Systems
(GIS) are employed for handling and performing analysis on a myriad of spatial
data (Reibel, 2007); in particular, this includes linking spatial coordinates to socio-
economic and demographic data. For the present problem, the two most important
spatial units are those of the point and the polygon. A point consists of X and Y
coordinates (e.g., longitude and latitude, or a projection thereof into the plane) and
a polygon represents a series of line segments (again in either latitude/longitude or
planar coordinates) identifying a closed region on the Earth’s surface. Because of
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the curvature of the Earth’s surface, most map-based and related calculations are
based on points and polygons that have been projected onto a plane; the choice of
map projection can have non-trivial effects for such important measures as interpoint
distances and polygonal areas, and thus must be chosen carefully. Fortunately, when
working with small areal units such as those employed in this paper, distortions due
to projection are easily overcome (e.g., by using orthonormal projections about the
centroid of the areal unit). More details on choice of projection and coordinate system
can be found in Snyder (1987).

3.2 Household Distributions

There exist a plethora of reasons to be interested in the distribution of human pop-
ulations over space, and particularly the location distribution of human households.
Humans have since prehistory gathered together in small groups (often kin groups) to
manage their livelihoods (McC. Netting et al., 1984), and we loosely refer to a group
of persons residing at the same location and sharing resources a household. In the
modern context households are often studied as units of decision making (e.g., Davis,
1976), used in the study criminology (e.g., Hipp et al., 2011; Short et al., 2010), as
well as units for disease and information spread (Salathé and Jones, 2010), et cetera.
Here, we focus on the household as our basic unit of interest. The study of household
activities over spatially diverse contexts has been performed primarily through the
concatenation of administrative data (e.g., censuses) and spatial data (e.g., surveys or
sensors) to make various predictions, forecasts and simulations for scientific and pub-
lic policy reasons (Jefferson Fox and Mishra, 2003). It is common to use spatial data
at a largely aggregate level (e.g., a US census tract), and this has allowed for much
scientific progress; however, reliance on aggregate data raises concerns regarding the
risks of fallacious ecological inference (Gibson et al., 2000) and the modifiable areal
unit problem (Openshaw, 1984). Another issue with aggregate data is that it does
not allow for certain types of analysis necessary for social science, public health or
demographic research. Here, we are particularly concerned with the situations where
one cannot conduct one’s analysis without household-level spatial information, such
as modeling of transmission of disease between households, daily mobility patterns,
or patterns of interpersonal contact. Because administrative and archival data of-
ten lacks individual or household locations, we propose in this research to use point
process probability models to simulate household distributions over administrative
polygons which maintain key statistical properties of interest.

4 Point Process Models and Simulation

A point process is defined mathematically as a random element whose values are point
patterns on a set S. This can be defined more technically, but for our purposes it
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is sufficient to think of a point pattern as a countable subset of S that has no limit
points.

The most important and basic point process model is the spatial Poisson pro-
cess. The following development follows that outlined in Diggle (2003) and is one of
the standard descriptions of Poisson or planar Poisson processes. A spatial Poisson
process is equivalent to a standard (or temporal) Poisson process with some known
rate function where one is associating each event a random vector (x, y) ∈ S sampled
from some probability density function. More formally a homogeneous planar Poisson
process may be defined under the following conditions:

i) For some λ ≥ 0, and any finite planar region S, N(S) – the number of events with
corresponding vectors in S) follows a Poisson distribution with mean λ|S|, where
|S| is the area of S. (Note that, here λ is called the intensity of the process.)

ii) Given N(S) = n, the n events in S form an independent random sample from
the uniform distribution on S.

It is worth pointing out that λ|S| is the integral of λ over S, and thus to acquire
an inhomogeneous planar Poisson process, one need only replace the constant λ by a
spatially dependent intensity λ(x, y) – replacing condition i with “for some λ(x, y) ≥
0, and any finite planar region S, N(S) follows a Poisson distribution with mean∫
S
λ(x, y)dxdy.”
The homogeneous Poisson process is only one of a wide range of point processes

that may be employed to simulate household location distributions. Here, we em-
ploy three variant processes, the first of which is an application of the uniform or
homogeneous process (conditioned on region boundaries and observed population),
the second of which is a deterministic low-discrepancy process that behaves much like
a uniform distribution (but tends to place households away from one another), and
the third of which is an inhomogeneous Poisson process whose intensity function (λ)
depends on proximity to unit boundaries. We now consider each of these processes
in turn.

4.1 Constant-intensity N-conditioned Poisson Process Model
(Uniform)

The constant-intensity N-conditioned Poisson process model (from here on referred
to as the Uniform model) is a maximum entropy solution in which households (or in-
dividuals) are placed uniformly at random subject to known geographical constraints
(e.g., tract borders). This is commonly known as Complete Spatial Randomness
(CSR) or Spatial Poisson process and is the most basic point process model (an
example may be seen in Figure 5(c)).
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4.2 Low-discrepancy Sequence Model (Quasi-random)

The low-discrepancy sequence model (henceforth referred to as the Quasi-random
model) is a near-minimal entropy solution in which households are placed in an ex-
tremely even, “grid-like” manner using a two-dimensional Halton sequence. A Halton
sequence is a deterministic sequence of points that “fills” space in a uniform man-
ner, while also maintaining a high nearest-neighbor distance. The result (sometimes
called a “quasi-random” distribution) is similar to a set of draws from the uniform
distribution, but substantially more evenly placed (see Gentle, 1998, for algorithmic
details). An example may be seen in Figure 5(d).

4.3 Inhomogeneous Poisson Process Model (Attraction)

The inhomogeneous Poisson process model (henceforth referred to as the Attraction
model) is one in which assume points are distributed such that they cluster around
polygon boundaries. This is controlled by a given point potential function defining
the intensity λ(x, y). We consider two forms for the potential function, which are
defined as follows. Let Z be a collection of line segments (indicating boundaries of
the areal unit, internal polygons (such as subsidiary unit boundaries), or elements
such as roads), and let d((x, y), z) for z ∈ Z be the minimum distance between the
point (x, y) and the line segment z.

λ(x, y) = max
z∈Z

(1 +

∣∣∣∣d ((x, y), z)− o)
s

∣∣∣∣e , (1)

where s is a scale factor, o is an “optimum” distance, and e is an exponent. Generally
the parameters s, o, and e are selected so that s > 0, o ≥ 0, and e < 0. Intuitively, the
resulting point potential attracts points to polygon boundaries (or, more generally,
the elements of Z), with maximum intensity occurring when one is at distance o from
a line segment. This definition is motivated by the frequent use of roads, waterways,
or other similar physical elements as boundaries of areal units: housing units are
often located along such features, but are frequently offset by some amount. For an
example of this process see Figure 5(b).

Although the parameters of λ may potentially be inferred from data via likelihood-
based methods, we are interested here in the heuristic setting in which the potential
must be employed with limited fine-tuning. Given this, we set o = 0 and used a crude
grid search to find values of s and e that produced highest average p-values over all
aggregated cases in the test data (described below). This resulted in parameter values
of s = 0.00015 and e = −1.5 (with the former in angular units. Experimentation
suggested that the results reported here are reasonably robust to these settings, and
minor changes do not greatly change the resulting point patterns.
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5 Standard Statistical Measures for Point Processes

In order to compare the distribution of household locations arising under our models
to those empirically observed, we require appropriate descriptive statistics. Here, we
describe several standard descriptives from the point process literature, that may be
employed to assess the extent to which simulated household distributions do or do
not deviate from their empirical counterparts.

5.1 Ripley’s K Function

Ripley’s K(s) function (sometimes called the reduced second moment measure) is a
tool for analyzing completely mapped spatial point process data (Diggle, 2003). These
are usually events recorded in two dimensions, but they may be locations along a line
or in multidimensional space (e.g., households within a city block). Intuitively, the
K function expresses the degree of spatial clustering among points, at multiple scales
– more specifically, the tendency for other points to appear within distance s of an
arbitrary realized point.

5.1.1 Theoretical K

The K function is defined as:

K(s) =
1

λ
E [number of other events within distance s of a randomly chosen event] , (2)

where λ is the density (number per unit area) of events; thus, K describes charac-
teristics of a point process at different distance scales. Note that many alternative
standard measures such as the nearest neighbor methods (see Section 5.2) do not have
this property. K is generally the preferred characterization of spatial point process
by statisticians and geographers (see, e.g. Diggle, 2003), and we use it as the basis of
our empirical investigation in Section 8.

5.2 Nearest Neighbor Measures

In addition to the variation in conditional density through space, one can also consider
point processes in terms of their nearest-neighbor properties. Here, we comment
on two functions of this sort that are of potential utility in assessing point pattern
adequacy.

5.2.1 G Function

The G function measures the distribution of the distances from an arbitrary event
to the nearest other event (see, Diggle, 2003). Usually these distances are denoted
di = minj{dij ∀j 6= i}, i = 1, . . . , n, so that the G function is is
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G(r) =
#{di : di ≤ ri, ∀ i}

n
, (3)

where the numerator is the number of elements in the set of distances that are lower
than or equal to d, and n is the total number of points.

5.2.2 F Function

The F function measures the distribution of all distances from an arbitrary point of
the plane to the nearest realized event (see, Diggle, 2003). Bivand et al. (2008) notes
that this function is often called the empty space function because it is a measure of
the average space left between events. (Note the contrast with G, in which the focal
point is itself a realized event.) The F function of a stationary point process X is
the cumulative distribution function F of the distance from a fixed point in space to
the nearest point of X. Under CSR, F is:

F(r) = 1− exp
(
−λ · π · r2

)
. (4)

6 Comparison Data: US Census Geography and

Household Parcel Lots

To evaluate the above models, we seek to compare their resulting simulated house-
hold distributions from those encountered in realistic settings. Although household
location data is difficult to obtain, we are able to employ parcel data from three US
communities for testing purposes. While not representative of all communities world-
wide, we view these three cases as a “proof of concept” for the wider use of settlement
pattern imputation from simulation models like those employed here.

6.1 US Census Geography

Our basic source of geographical information is the year 2000 US census. “The United
States Census is a decennial census mandated by the United States Constitution. The
population is enumerated every 10 years and the results are used to allocate Congres-
sional seats (congressional apportionment), electoral votes, and government program
funding” (U.S. Census Bureau, 2001). The data collected in the decennial census has
since 2000 been made available to the public as spatial polygon data broken down into
three key designations: Tract, Block Group, and Block, each representing different
levels of human population aggregation. The Block represents household or individ-
uals aggregated at the level of city block (if the population density is sufficient not to
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jeopardize an individuals privacy) or larger unit; Block Groups represent an aggre-
gation of Blocks, and Tracts represent an aggregation of Block Groups (U.S. Census
Bureau, 2001). This data is made available through the US Census website2, and
through statistical software such as the UScensus2000 R-package (Almquist, 2010).

6.2 Household Distribution Data in the US

There is limited access to household data in the United States, and this can be even
more difficult in other countries. In some cases, however, household-level geospa-
tial data may be acquired from cities and counties across the US that is collected
for purposes of local or state property tax administration. This household data
available is known as parcel data, and is either maintained as Shapefiles or simple
longitude/latitude point files; typically this data is difficult and time consuming to
acquire when available.3 To provide an empirical comparison set for our point pro-
cess models, we have acquired three different sets of parcel data within the US: an
urban setting (Portland, OR), a suburban setting (Irvine ,CA), and a rural setting
(Deschutes County, OR). For an example see Figure 5(a). Although a more general,
representative sample of parcel data is not available at this time, the range of ur-
banization in our three cases provides some suggestion of how model performance
might vary across similar communities in the United States or other countries with
comparable settlement patterns.

6.3 Urban, Suburban, and Rural Classification

The US Census classifies areas as either urban or rural. Urban areas are broken
into two classifications: Urbanized Areas (UA) – a continuously built-up area with a
population of 50,000 or more; and, Urban Places Outside of UAs – an urban places
is any incorporated place or census designated place (CDP) with at least 2,5000
inhabitants. The rural designation is defined as follows: A territory, population, and
housing units that the Census Bureau does not classify as urban are classified as rural
(U.S. Census Bureau, 2001).

We extend the US Census Urban/Rural classification to include a notion of subur-
ban. “Suburban areas are typically considered to be regions of lower density residential
land use at the urban fringe, and are often thought to be synonymous with sprawl,
but there is no standard quantitative definition” (Theobald, 2004). The notion of
Suburbia is old and is found in the Sociology literature as far back as 1943 (Harris,
1943). In this case we use the concept of suburb to represent a city which is less dense
than urban center, not a proper Metropolitan Statistical Area (MSA) into itself (e.g.,

2www.uscensus.gov
3This data may also be expensive, because it is created by local area governments and then sold

to local area development firms.
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Los Angeles MSA; U.S. Census Bureau, 2001), and that is contained near a large
Metropolitan Area.

With this classification in mind, we briefly consider our three cases in turn.

6.3.1 Urban: Portland, OR

Portland, Oregon is a city with an estimated population of 529,121 people and esti-
mated household population of 223,737 (U.S. Census Bureau, 2001). The local city
government of Portland has parcel data for 248,325 households4. Portland is the
largest city in Oregon and represents the economic center of the state. The city also
contains the largest University in Oregon, and its suburbs include the large business
such as Nike and Intel. The US Census classifies Portland as urban (see Table 1: U.S.
Census Bureau, 2001). A visual portrayal of the household distribution of Portland
overlaid on US Census Blocks, Block Groups and Tracts may be seen in Figure 1.

Portland
Oregon

Urban: 527,255
Rural: 1,866
Total: 529,121

Table 1: Portland, Oregon Urban/Rural classification by the US Census in 2000.

6.3.2 Suburban: Irvine, CA

Irvine, California is a city with an estimated population of 143,072 people and esti-
mated household population of 51,199 (U.S. Census Bureau, 2001). The local city
government of Irvine has parcel data for 49,002 households5. The US Census clas-
sifies Irvine as urban (see Table 2: U.S. Census Bureau, 2001). For the purposes of
this research we classify Irvine as a suburban city, as it is less dense than Portland,
does not represent an MSA and is close in proximity to the significant MSA of Los
Angeles. A visual portrayal of the household distribution of Irvine overlaid on US
Census Blocks, Block Groups and Tracts may be seen in Figure 2.

6.3.3 Rural: Deschutes County, OR

Deschutes County, Oregon is a county with an estimated population of 115,367 people
and estimated household population of 45,595 (U.S. Census Bureau, 2001). The local

4Note this is the population we employ here; due to demographic changes, the parcel data contains
more households than were present in the 2000 census.

5Note this is the population employed here, and is slightly smaller than the household count in
the 2000 census.
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Irvine
California

Urban: 143,011
Rural: 61
Total: 143,072

Table 2: Irvine, California Urban/Rural classification by the US Census in 2000.

county government of Deschutes has parcel data for 70,293 households6. The US
Census classifies Deschutes County as mix of rural and urban (see Table 3 U.S. Census
Bureau, 2001). The urban portion of the county is Bend, OR (and few outlying areas
around Bend) a city of 52,029 in 2000 (see Table 3: U.S. Census Bureau, 2001).
Deschutes County is used primarily for it rural nature. A visual portrayal of the
household distribution of Portland overlaid on US Census Blocks, Block Groups and
Tracts may be seen in Figure 3.

Deschutes County
Oregon

Urban: 72,554
Rural: 42,812
Total: 115, 367

Table 3: Deschutes County, Oregon Urban/Rural classification by the US Census in
2000.

7 Comparison Measure

The evaluation of our proposed household location models involves the comparison of
two point distributions: that of the observed household distribution and that of the
simulated household distribution. The literature in applied spatial analysis has tended
to focus on the comparison of point distributions over two (or more) time points rather
than the comparison of two different point processes. The most common examples
are in the ecological literature, especially dealing with trees (for a good review see,
Perry et al., 2006). However, as we are comparing two different point distributions
(i.e., not emanating from a temporal process) we apply Diggle and Chetwynd’s (1991)
recommendation of using the sum of normalized difference of Ripley’s K statistic at
m breaks.

6This population substantially larger than the 2000 count, likely due to considerable growth in
Bend, OR (the largest city in the county) between 2000 and 2010.
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D(s) = K1(s)−K2(s)

D =
m∑
k=1

D(sk)

var(D(sk))
(5)

The numerator is sometimes known as Diggle’s D. To test whether the two dis-
tributions are different we apply Monte Carlo (MC) tests for spatial patterns (Besag
and Diggle, 1977).

A MC test consists of ranking the value of a statistic computed on observed data
amongst a corresponding set of statistic values generated by random sampling from
a null distribution. In this case the null distributions are our three proposed models
(Uniform, Quasi-random, and Attraction), with our aim being to assess the extent to
which the distributions of D under these models cover the D values of the observed
data.

Note that under mild conditions this test determines an exact significance level
and that the number of simulations, k, can be quite small.7 We call the resulting
p-value, an MC-pvalue. In this research we will not be interested in the MC-pvalue in
the traditional sense, but in its inverse. In other words, we are interested in the case
when the two distributions are not strongly distinguishable. We will therefore use a
standard α level of 0.05 (or really 0.025 for a two tailed test) to determine whether
the two point processes are sufficiently different to be considered effectively distinct.

8 Analysis and Results

To evaluate our proposed models, we simulate distributions for samples of polygons
from each of our three cases, comparing those distributions against the observed data
via the MC test of the D statistic (as shown above). Here, we briefly describe software
and procedural issues, before turning to our findings.

8.1 Software

All code for this paper was written in the R statistical programming language (R
Development Core Team, 2010). R is among other things a powerful GIS tool (see,
Bivand et al., 2008). To perform the analysis functions from spatstat (Baddeley and
Turner, 2005), networkSpatial (Butts and Almquist, 2011), splancs (Rowlingson
and Diggle, 1993), rgdal (Keitt et al., 2009) and UScensus2000-suite of packages
Almquist (2010) were employed.

7Due to computational complexity of this problem k = 40 for this research.
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8.2 Comparison of Point Distributions

For computational reasons, we chose to perform our Monte CarloD test on a population-
weighted subsample of areal units from each level for each test case. Th sample size
for each level/case combination was 100, if 100 units were available; otherwise, all
units in the specified level/case combination were used.

For each polygon in each sample, we perform an MC D test for each of the three
proposed models. For each such test, we regard the observed data as adequately
covered by the model if the D statistic lies within the central 95% simulation interval
produced by the model in question.8 To assess overall adequacy, we then examine
the fraction of areal units for which coverage is adequate. We note that this is a
fairly demanding standard of “adequacy,” in that a simulated distribution may prove
to be a reasonable approximation of the observed data, while still being statistically
distinguishable from it. (We return to this issue below.)

8.2.1 Model Adequacy for the Test Data

Tables 4, 5, and 6 provide the fraction of areal units in each test region for which D
does not differ significantly from each of the three proposed models. Looking across
the three regions, we observe immediately that model performance is substantially
better for block-level data than for block groups or tracts. This appears to result
from the fact that block groups and tracts are not only much larger than blocks,
but also substantially more heterogeneous; to reproduce D within a block group
or tract requires the model to correctly reproduce the very considerable variation
in population densities observed at the block scale, a feat for which none of the
three models are well-prepared. On the other hand, we also see that, of the three
models, the Attraction model substantially outperforms its peers on larger areal units.
This is because the Attraction model can use boundary information as “clues” about
where dense clusters of points might reside, thus recovering some of the underlying
heterogeneity. Nevertheless, none of models approach perfect performance for larger
areal units.

For small areal units, on the other hand, performance is quite good: in both Irvine
and Deschutes County, approximately 87% of sampled blocks did not differ signifi-
cantly from the simulated data. Even in Portland, where performance was lowest,
the majority of blocks were not statistically distinct from the Attraction model. This
suggests that, where one needs a proxy for household location data at the block level,
even a very simple model may prove adequate for many applications.

8.2.2 Qualitative Comparison

While the Monte Carlo test provides a strict criterion for model adequacy, it is also
useful to consider the extent to which the K distributions produced by the three

8Note that cases containing fewer than two points were removed from consideration.
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Portland, Oregon
Quasi-random Uniform Attraction

Tract 0.00 0.02 0.13
Block Group 0.00 0.14 0.19

Block 0.38 0.56 0.58

Table 4: Proportion of blocks non-significant under the MC test performed on the D
statistic.

Irvine, California
Quasi-random Uniform Attraction

Tract 0.04 0.06 0.22
Block Group 0.13 0.22 0.25

Block 0.73 0.86 0.87

Table 5: Proportion of blocks non-significant under the MC test performed on the D
statistic.

proposed models qualitatively approach the observed data. As a basic point of com-
parison, we consider the average squared correlation (R2) between the distribution of
K functions for the simulated household distributions and the observed K function.
Given the monotone nature of the K function, all R2 values tend to be high (mean
apx 0.98 for Tract and Block Group units, and 0.5 for Blocks), but we may directly
inspect “typical” cases by selecting the areal unit in each location and scale class
for which the R2 is at or closest to the median. The resulting curves are shown in
Figure 4.

As the figure shows, the qualitative fit of the median case to the data is excellent in
Portland, OR at all scales. Although this may seem surprising in light of the findings
of Table 4, we note that the two procedures involved answer distinct questions: the
MC test tells us that deviations from the model are detectable in the Portland case,
but the qualitative examination shows that the behavior of the curves in question are
otherwise quite close. By contrast, the fit to the other two cases is less good; while
the overall shape of each curve tracks the data, the magnitudes are plainly off for
larger areal units. At the Block level, the figure underscores the point that there is
considerable variability in the associated distributions, thus contributing to the lack of
significant deviations. Taken together with the adequacy results, these results seem
to suggest that the proposed models may be good proxies for large-unit behavior
in urban areas (even where they are statistically distinguishable), and Block-level
behavior in most areas.
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Deschutes County, Oregon
Quasi-random Uniform Attraction

Tract 0.00 0.00 0.00
Block Group 0.01 0.04 0.07

Block 0.87 0.86 0.87

Table 6: Proportion of blocks non-significant under the MC test performed on the D
statistic.

8.2.3 Case Study

Finally, to get additional insight into the simulation processes under study we provide
a closer examination of simulated and observed data for a Tract in Portland, Oregon.
We begin by considering the point plot of the observed data and the simulated pattern
of each of the three baseline models: Uniform, Quasi-random, and Attraction Models
(Figure 5). We then proceed to visually compare the K, G, and F functions.

Figure 6 makes it visually apparent that in the chosen Tract the Attraction model
performs significantly better than the other two baseline models. In Figure 7 we
see that none of the models capture the fine details of the observed data, although
the Attraction model does capture the basic pattern of inhomogeneity in population
density throughout the tract. Lastly, we see that in Figure 8 that the Attraction
model performs the best on the F statistic.

9 Conclusion and Discussion

In this paper we have set forth an important problem that exists because of the ag-
gregation of areal units for large scale administrative data such as the US Census.
The placement of households (or individuals) is important for many social and demo-
graphic processes and the ability to map households over a given polygon boundary
is potentially important for micro-social processes such as transmission of disease
between households, daily mobility patterns, or patterns of interpersonal contact.
When dealing with processes that require modeling interaction directly (e.g., social
networks) one often has need of a specific location for individuals or households. For
example, consider the simulated spatial networks of Butts et al. (forthcoming); Carter
T. Butts (2011).

We demonstrate that at the Block level all three models perform reasonably well,
but the Attraction model typically outperforms the Quasi-random and the Uniform
model in Tract and Block Group levels (sometimes by as much as 16 percent). Since
the Attraction model performs as well or better than the other two models, we ad-
vocate that for household simulation one should in general use the Attraction model.
The Attraction model has the advantage of being able to take into account macro-level
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patterns such as roads or waterways, unlike the Uniform and Quasi-random models
(Figure 5(b)).

We want to emphasize here that the statistical test employed to assess model
adequacy is a quite stringent one, and thus the simulated distributions may be suf-
ficiently good approximations to meed research needs even where distinguishable in
terms of the D statistic from the empirical household distribution. Take, for example,
a median areal unit from any of the three test case (Figure 4) where we can see that
the simulated point process appear to capture the general trend of the observed K
function.
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Portland, Oregon

(a) Parcel data & US Census 2000 Blocks of Portland,
OR.

(b) Parcel data & US Census 2000 Block Groups of
Portland, OR.

(c) Parcel data & US Census 2000 Tracts of Portland,
OR.

Figure 1: Portland, Oregon Households and polygons (Blocks, Block Groups, and
Tracts).
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Irvine, California

(a) Parcel data & US Census 2000 Blocks of Irvine, CA.

(b) Parcel data & US Census 2000 Block Groups of
Irvine, CA.

(c) Parcel data & US Census 2000 Tracts of Irvine, CA.

Figure 2: Irvine, California Households and polygons (Blocks, Block Groups, and
Tracts).
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Deschutes County, Oregon

(a) Parcel data & US Census 2000 Blocks of Deschutes
County, OR.

(b) Parcel data & US Census 2000 Block Groups of
Deschutes County, OR.

(c) Parcel data & US Census 2000 Tracts of Deschutes
County, OR.

Figure 3: Deschutes County, Oregon Households and polygons (Blocks, Block Groups,
and Tracts).
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Figure 4: K function for the median Tract/Block Group/Block geography for Port-
land, OR (a); Irvine, CA (b); and Deschutes County, OR (c).
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(a) Parcel Data. (b) Attraction Model

(c) Uniform Model (d) Quasi-random Model.

Figure 5: Observed and simulated point distributions over tract “009701” in Portland,
Oregon for the three baseline models considered in this paper.

24



Comparison of K Function
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Figure 6: Comparison of the three baseline models and the observed distribution of
K.
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Comparison of G Function
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Figure 7: Comparison of the three baseline models and the observed distribution of
G.
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Comparison of F Function

0e+00 2e−04 4e−04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Parcel Data

r

F
(r)

F̂km(r)
Fpois(r)

0e+00 1e−04 2e−04 3e−04 4e−04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Attraction Model

r

F
(r)

F̂km(r)
Fpois(r)

0.00000 0.00010 0.00020

0.
0

0.
2

0.
4

0.
6

0.
8

Uniform Model

r

F
(r)

F̂km(r)
Fpois(r)

0.00000 0.00010 0.00020

0.
0

0.
2

0.
4

0.
6

0.
8

Quasi−random Model

r

F
(r)

F̂km(r)
Fpois(r)

Figure 8: Comparison of the three baseline models and the observed distribution of
F .
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