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SUMMARY 

Research on interval censored time to event using complex survey data faces three 
methodological challenges: clustered data with informative sampling weights, interval-censored 
event times, and an unknown subpopulation not at risk. This paper has two study aims. First we 
use non-parametric maximum likelihood methods using Turnbull algorithm to estimate the 
Kaplan-Meier analog of survival function with this data.  We further extend the Pseudo 
Maximum Likelihood method to a random effect, mixture distribution model within the framework 
of Accelerated Failure Time model. Particular attention is paid to the scaling of sample weights 
in multistage sampling. We use the National Longitudinal Study of Adolescent Health data and 
assess time to obesity among adolescents. We confirm that the magnitude of regression 
coefficients can be biased when informative sampling design is not accounted for. Also the 
variances are underestimated when clustering is ignored. When the two different 
subpopulations, one at risk and the other not at risk for the event, are not addressed in a model, 
the regression coefficients may be biased and mask the true association between covariates 
and time to event.  

 

 

  



2 of 22 
 

1. INTRODUCTION 

Data collected through sample surveys have been widely used for hypothesis testing through 

different statistical methods including survival analysis. Survival analysis, a statistical method to 

examine time to event of interest and its association with risk factors, may face methodological 

challenges when analyzing complex survey data. Major methodological challenges lie in that: 1) 

data collected through multistage sampling survey are often clustered and have unequal 

sampling probabilities associated with time to event of interest; 2) the exact time to event may 

not be observed by researchers; and 3) there may be an unknown subpopulation not at risk for 

the event of interest. 

Multistage sampling designs often cause clustering, i.e., correlation of observations at a lower 

stage of sampling within higher sampling units (Kish 1965; Lohr 1999). When clustering is 

ignored, variance estimates of parameters are often biased downward. Another problem that 

data collected through multistage sampling designs may possess is unequal sampling 

probabilities associated with time to event of interest. When sampling probabilities at one or 

more sampling stages depend on time to event of interest after accounting for covariates and 

vary across a sample, the sampling design is said to be informative. Informative sampling 

design causes standard estimators of parameters to be biased (Grilli and  Pratesi 2004; Korn 

and  Graubard 2003; Pfeffermann et al. 1998; Skinner 1989). The direction and magnitude of 

the bias cannot be determined as a priori knowledge.  

To address the bias when sampling design is informative, Skinner (1989) presents several 

alternative design-based methods, including the Pseudo Maximum Likelihood (PML) and 

Moment Structures and Generalized Least-Squares (GLS) methods. Pfeffermann et al. (1998) 

propose a statistical approach to incorporate sampling design in the context of a two-stage 

sampling design, following the work by Skinner (1989). They prove that when the sample size is 

sufficiently large the PML method applying reciprocals of the sampling probabilities at each 

sampling stage can yield consistent estimators of parameters in a model with a continuous 

dependent variable. Grilli and Pratesi (2004) extend the work by Pfeffermann et al. (1998) and 

Skinner (1989), and propose a statistical approach to weighting estimations for data with an 

ordinal or binary outcome variable. Applying reciprocals of the sampling probabilities at each 

sampling stage to weight the log-likelihood function and testing the results through a simulation 

study, they show that the extension of the PML method to a binary or ordinal outcome variable 
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can yield consistent estimates of parameters. These studies are relatively recent, suggesting 

that the implications of informative sampling designs need to be further explored. 

Time to event data collected through panel surveys often involve interval censored data. When 

the exact time to event of interest is not observed by a researcher, the event times are said to 

be censored. Specifically, event times are right-censored if study participants are lost to follow-

up or do not experience the event by the end of the study, left-censored if they already 

experienced the event by the first observation time point, and interval-censored if they 

experience the event between two observation points and the exact time is not known.  While 

right-censored event times can be accounted for by both Accelerated Failure Time (AFT) and 

Proportional Hazard (PH) models, interval-censored event times require model specification 

within the framework of AFT model (Allison 1995). 

The standard survival analysis assumes that every individual is at risk for the event of interest, 

of which assumption may not hold when there is a subpopulation not at risk. Often surveys have 

a fixed period of time for observation or data collection. Individuals who do not realize an event 

by the end of study are recorded as right-censored observations. Those right-censored 

observations may be comprised of two different subpopulations: at-risk individuals whose 

survival time exceeded the last observation time point, and “long-term survivors” not at risk for 

the event. When the subpopulation not at risk for the event is not known to the researcher, the 

subpopulation cannot be distinguished from at-risk individuals whose survival time exceeded the 

study period. As a result, they are examined as at-risk individuals in the standard survival 

analysis, based on the assumption that they will eventually realize the event. Consequences of 

the inappropriate assumption include biased estimates of parameters (Taylor et al. 2003). 

Examples of such data can be found in the studies of time to conception when the population 

contains an unknown proportion of sterile subjects. In the example discussed in this paper we 

assume that there is an unknown proportion of subjects who can be classified as long-term 

survivors of obesity.  

Previous research adopted mixture distribution models often involving two components: a 

survival distribution for at-risk individuals and a probability distribution of risk for the event (most 

commonly a Bernoulli distribution) (Berkson and  Gage 1952; Boag 1949; Farewell 1982; Simon 

E. Pack and  Byron J. T. Morgan 1990; Taylor et al. 2003). The early work was motivated by 

studies including, but not limited to, those by Boag (1949) and Berkson and Cage (1952). 

Farewell (1982) reviewed a mixture distribution model incorporating a Bernoulli distribution in a 
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parametric survival analysis model. Pack and Morgan (1990) extended a mixture distribution 

model to account for interval-censored event times. More recently, Taylor et al. (2004) applied a 

mixture distribution model incorporating a Weibull survival distribution and a Bernoulli 

distribution to sexually transmitted diseases data. However, studies on mixture distribution 

models are still few and require further research.   

In summary, the three methodological challenges, i.e., clustered data with informative sampling 

probabilities, interval-censored time events, and an unknown subpopulation not at risk, suggest 

that parameter estimates may be biased and hypothesis testing results may be invalid if 

statistical analysis fails to account for them. In contrast to the increasing application of survival 

analysis to survey data in various fields in the last few decades, little research exists to address 

the problems. This study demonstrates a statistical approach to addressing the three challenges. 

First we use non-parametric maximum likelihood methods using Turnbull algorithm to estimate 

the Kaplan-Meier analog of survival function.  We further extend the Pseudo Maximum 

Likelihood method to a random effect, mixture distribution model within the framework of 

Accelerated Failure Time model. Particular attention is paid to the scaling of sample weights in 

multistage sampling. We consider the National Longitudinal Study of Adolescent Health, 

conducted by the Carolina Population Center, University of North Carolina at Chapel Hill as an 

example and focus on time to obesity among adolescents and its association with major 

demographic characteristics including gender and race/ethnicity. 

 

2. MOTIVATING EXAMPLE 

Obesity among adolescents has become a more pressing public health problem in recent years 

in the United States.  It is estimated that the proportion of obese adolescents (i.e., BMI equal to 

or greater than the 95th percentile of the sex-specific BMI growth charts) ages 12-19 increased 

from 5.0% to 18.1% between 1976-1980 and 2007-2008 (Ogden and  Carroll 2010).  Obesity 

has negative consequences for physical, psychological, and social well-being throughout the life 

course, including increased risk for adulthood obesity (Dietz 1998; Goodman et al. 2000; Harris 

et al. 2009; Reilly et al. 2003; Serdula et al. 1993; Whitaker et al. 1997), comorbidities (Dietz 

1998; Harris et al. 2009), and deteriorated social life (Goodman et al. 2000; Gortmaker et al. 

1993; Harris et al. 2009; Strauss and  Pollack 2003). Adolescence obesity is associated with 

disparities among socio-demographic subgroups including gender and race/ethnicity (Goodman 

et al. 2000; Harris et al. 2009; Ogden and  Carroll 2010; The et al. 2010), in which males and 
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racial/ethnic minorities are more likely to be overweight or obese than their respective 

counterparts. Research on time to obesity among adolescents is required to inform policies as 

to the timing and target population of interventions. We use the Add Health data to address the 

question. 

Add Health is a nationally representative, school-based longitudinal study of adolescents aimed 

at exploring health related behaviors (Gordon-Larsen et al. 2004). This study focuses on 

adolescents interviewed through an in-home questionnaire which collects information from 

sampled students in grades 7 to 12 enrolled in selected schools. The first wave was carried out 

in 1994 -1995 (when the respondents are around the ages 12-20), followed by wave II in 1996 

(when respondents are around the ages 13-21), wave III in 2001-2002 (when the respondents 

are around the ages 18- 26), and wave IV in 2007-2009 (when the respondents are between 

age 24-32.  

At wave I, schools and adolescents were sampled based on a multistage sampling design. At 

the first stage, a nationally representative sample of 80 high schools and 52 middle schools was 

selected with probability proportionate to size. At the second stage, 20,745 adolescents in 

grades 7 through 12 enrolled in the sampled schools were selected with unequal sampling 

probabilities to allow oversampling of several ethnic-minority groups. Therefore, the Primary 

Sampling Unit (PSU) is school and the Secondary Sampling Unit (SSU) is individual adolescent. 

At wave II, 14,738 adolescents comprising a subsample of adolescents interviewed at wave I 

were followed up. Waves III and IV targeted all wave I respondents and followed up 15,197 and 

15,701 adolescents and young adults, respectively. The analytical sample used in this study 

excludes respondents with missing data and is comprised of 18,466 respondents from 130 

schools. The outcome is time to obesity, measured by respondent’s age in years at the time of 

the onset of obesity, measured by body mass index (BMI). BMI values of 30 or greater or age- 

and sex-adjusted BMI percentiles of 95 or greater are classified as obese.  

Because onset of obesity is observed only at each of the waves, the exact time to onset of 

obesity is unknown in this data. Instead we know that the observation to time to event is left 

censored ( if the subject is already obese at wave I), interval censored if the subject is observed 

to be obese in between two waves and the right censored if the subject is not obese at last 

observation. 

Descriptive statistics of the respondents, weighed by their final sampling probability, are 

presented in Table 1. Males and females are distributed almost evenly (51.0% and 49.0%, 



6 of 22 
 

respectively). The majority of respondents self-classified their race/ethnicity as non-Hispanic 

Whites (72.7%), followed by African-Americans (16.0%).  Of the 18,466 respondents, 2,059 

(11%) had left-censored event times, 12,549 (68%) had right-censored event times, and 3,848 

(21%) had interval-censored event times.  

 

Table 1. Descriptive statistics of respondents 

  % 
Gender  
  Male 51 
  Female 49 

  
Race/Ethnicity  
  Non-Hispanic White 72.6 
  Other 27.4 

Note: observations are weighted based on the final sampling probability 

 

3. METHODS 

Overview 

 We first estimate the survival curves using a non-parametric method proposed by Turnbull by 

incorporating sampling weights. We further extend the PML method to a random effect, mixture 

distribution model within the framework of AFT model to assess time to obesity among 

adolescents using the Add Health data. The model addresses the survey’s potentially 

informative sampling design, clustered data, censored event times, and an unknown 

subpopulation not at risk for obesity. For all the analyses, SAS version 9.2 (SAS Institute, Cary, 

NC) is used. 

 

Non-Parametric Estimation of Survival Curves  

Let kT  denote the time to obesity for the k th respondents, for k =1, 2,… n . Let ],( kk UO be the 

interval for which  kT  is measured where ijO  and ijU are lower and upper time points, 

respectively. Note that the interval ],( kk UO  may overlap across respondents.  From the data of 
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overlapping intervals ],( kk UO ,  Turnbull (1976) derived a procedure to generate a set of  non-

overlapping intervals ]},(],...,,{(},{ 11 mmll pqpqpq =  for ml ,...,1= , over which  the survival 

curve S(t) = Pr( )T t>  can be estimated (Turnbull 1976). The set of non-overlapping intervals 

are obtained from all left, interval and right censored intervals in such a way that lq is a left end  

point and lp is the right end point, and there is no other left  or right end point between lq   and 

lp .   

Turnbull (1976) proposed an EM algorithm to obtain a probability distribution (as well as the 

survival function). The procedure can be briefly summarized in the following way. Let 

( )mlpTq lll ,...,1,Pr =<<=θ . Note that 1
1

=∑
=

m

l
lθ . The iterative estimation of the parameters 

lθ  starts with initial estimates, usually assumed to be uniform in the intervals. 

The revised estimates are calculated as: 
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Then in the maximization step, an improved estimate can be obtained as ∑
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and the process is continued until convergence.  In order to account for sampling weights, a 

weighted average is calculated in the maximization step.     

 

Regression Analysis of Interval-Censored Event Times with Clustering 

Suppose time to obesity of respondent j  ( inj ,...,1= ) from i th school ( Ni ,...,1= ) is only 

known to be in the interval ],( ijij UO , where ijO  and ijU are lower and upper time points 

(measured by respondent’s age in years), respectively. That is, even time is right-censored if 

),( ∞ijO , left-censored if ],0( ijU , and interval-censored if both ijO  and ijU are observed and 

ijij UO ≠  , and exactly observed (i.e., non-censored) if both ijO  and ijU are observed and 

ijij UO = . To account for clustering of observations within schools, we incorporate a frailty term 
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in the model. For computational simplicity we assume the frailties follows a normal (0, θ ) 

distribution.  

We apply a likelihood approach in estimating the model parameters. Suppose observations from 

school i are independent conditional on an unobserved frailty ( ib ). For simplicity, we assume 

that time to obesity follows a Weibull ( p,λ ) distribution. Let ijax  be a vector of covariates (e.g., 

race/ethnicity and gender) for j th respondent from i th school,αbe a vector of corresponding 

coefficients, and )exp( 0αλ −= .Then the individual likelihood can be written as: 
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Regression Analysis Involving Informative Sampling Weights 

Suppose that an entire population (as opposed to a sample drawn from the population) contains 

M  clusters (schools) with iN  subjects (respondents within school). Based on the information 

on the entire population containing M  schools, the census log likelihood is specified as follows: 

∑ ∫ ∑
= = 
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i
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Ni

j
iij dbbbpLpL

1 1
)()|,,(logexplog),,(log φθθ αα ,   (2) 

However, the census likelihood cannot be obtained from a sample. Therefore the population 

quantities in the expression (2) are replaced by the analogous estimates based on the sample 

incorporating the sampling weights at the cluster and elementary observation unit levels.  

Suppose the clusters and subjects are sampled as follows: At the first stage N  clusters 

(schools) are selected with the inclusion probability iπ , Ni ,...,1= .  At the second stage in  

subjects (respondents) are selected within i th  selected cluster with the inclusion probability 

),...,1(| iij ni =π . Define the first stage sampling weight iiw π/1=  and the second stage 
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sampling weight ijijw || /1 π= , respectively.  Then a design-consistent estimate of the census 

likelihood can be obtained by incorporating the sampling weights at the first and second stages: 

∑ ∫ ∑
= = 
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N

i
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ni

j
iijiji dbbbpLwwpL

1 1
| )()|,,(logexplog),,(ˆlog φθθ αα .  (3) 

Similarly one can write the population score function ( ) / log ( )U Lθ θ θ= ∂ ∂ and the 

corresponding sample estimate ( ˆ ( )U θ ). Note that the implementation of the PML method using 

the sample quantities requires sampling weights at both levels. The sample score functions do 

not yield a closed from solution. Therefore iterative procedures are used to obtain parameter 

estimates. Bellamy et al. propose to approximate it through Gaussian quadrature.  

 

Scaling of Weights  

As noted above, sampling weights at both first and second sampling stages need to be 

introduced to generalize the PML method to a model accounting for an informative sampling 

design. We assume that iw , the sampling probability at the first sampling stage, may be 

correlated with time to obesity. However, we assume that ijw | , the conditional sampling 

probability at the second sampling stage is not correlated with time to obesity, after accounting 

for gender and race/ethnicity. These assumptions imply that the study design may be 

informative due to its sampling scheme at the first sampling stage.  

One strategy to reduce bias in parameter estimates is to scale the weights. Scaling of the 

second stage sampling weight may have important effect on the small sample behavior of the 

PML estimator (Grilli and  Pratesi 2004). Pfeffermann (1998) propose several approaches to 

scaling the conditional sampling weight ( ijw | ) under different assumptions: 1) 

∑∑=
j

ij
j

ijijij wwww 2
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*
| /)( , when the study design is informative at both the first and second 

stages, and 2) ∑×=
j
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*
| /)( , when the study design is informative at the first stage. 

Under the assumption that the study design is informative at the first stage, we apply the second 

method, i.e., ∑×=
j

ijiijij wnww ||
*
| /)( .   
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Regression Analysis Involving an Unknown Subpopulation Not at Risk 

Finally, we assume that respondents with right-censored event times consist of two groups: 

adolescents at risk for obesity but did not become obese by the last observation point, and 

those not at risk for obesity. Let Y be a random variable representing risk for obesity. That is, 

ijY =1 if respondent j from school i is at risk and ijY =0 otherwise. Then the probability of being 

at risk can be written as (Taylor et al. 2003): 

 { } { },)exp(1/)exp(|1Pr 222 βxβxx ijijijijY +==       (4) 

where 2ijx  is a vector of covariates, which may be different from  1ijx  (the vector of covariates 

associated with time to obesity) and β is a vector of corresponding coefficients. Suppose there 

are 1in respondents whose event times were not right-censored and 2in respondents whose 

event times were right-censored from school i , for 21 iii nnn += . Finally, introducing the mixture 

distribution to the function (3), the estimate of census likelihood incorporating the sampling 

design can be specified as follows: 
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            (5) 

where )|1Pr(1)|0Pr( 22 ijijijij YY xx =−== . The estimated census likelihood function (5) 

accounts for the three aforementioned methodological challenges: clustered data with 

informative sampling weights, interval-censored event times, and an unknown subpopulation not 

at risk.  

In this paper, we compare three regression models to examine the effects of the tree 

methodological challenges on parameter estimates and hypothesis testing. The first model is an 

AFT model ignoring clustering and informative sampling weights, based on the assumption that 

every individual is at risk (hereafter referred to as “unadjusted model”). The model incorporates 

the final sampling weight ijw , which is a common practice when using survey data. Parameter 
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estimates are obtained through LIFEREG procedure. The second model is an AFT model 

incorporating frailty and informative sampling weights, based on the assumption that every 

individual is at risk (hereafter referred to as “random effect model”).  Parameter estimates are 

obtained through NLMIXED procedure. The third model is an AFT model incorporating frailty 

and informative sampling weights, based on the assumption that there is a subpopulation not at 

risk (hereafter referred to as “mixture distribution model”). Parameter estimates are obtained 

through NLMIXED procedure.  

The NLMIXED procedure of SAS is well suited for the analysis purposes because it can easily 

incorporate these model specifications. The weighting method is introduced via the statement 

REPLICATE in NLMIXED. Because REPLICATE statement allows only an integer, the sampling 

weight at the school level, iw , is inflated by a constant (e.g., 100,000)  and controlled by the 

statement CFACTOR (see Grilli and Prastesi (2004) for details). As discussed in a later section, 

the standard errors are obtained through a Jackknife procedure for the random effect model and 

the mixture distribution model.  

The three models together can be considered a progression in addressing statistical 

assumptions. That is, the random effect model is built on the unadjusted model to address 

clustered data with informative sampling weights, and the mixture distribution model is built on 

the random effect model to address an unknown subpopulation not at risk. Differences in the 

parameter estimates, therefore, can be interpreted as the effect of addressing a statistical 

assumption that was ignored in the basis model.   

 

Estimation of Variances 

Because the aforementioned NLMIXED procedure involves replication, variances of parameters 

are not correctly estimated. Specifically, variances are underestimated due to the inflation of 

sample size. Therefore they need to be estimated through an alternative procedure.  

The robust sandwich estimator as proposed by Skinner (1989) is ideal because it can provide 

an appropriate variance of parameter estimates. However, the proposed sandwich estimator is 

derived from single-level models and its computation is not straightforward to derive from 

multilevel models. Therefore we estimate variances through a Jackknife procedure. Let τ  be a 
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parameter of interest. Korn and Grauard (1999) propose estimating its variance ( )(τV ) through 

a Jackknife procedure as follows (page 29): 

∑
=

−
−

=
N

i
iN

NV
1

2
)( )ˆˆ(1)ˆ(ˆ τττ         (6) 

where τ̂  is an estimate of τ  based on the entire sample, and  )(̂iτ  is an estimate based on data 

excluding school i .  

 

4. RESULTS 

Figure 1 plots the survival curve (i.e., the cumulative proportion of those not obese) for all the 

respondents using the non-parametric procedure proposed by Turnbull (1976).  The estimated 

cumulative probability of obesity by age 33 is 0.47.  

 

Figures 2 and 3 plot survival curves stratified by race/ethnicity (i.e., non-Hispanic Whites vs. 

others) and gender (males vs. females), respectively. Non-Hispanic Whites have a higher 

survival probability until their early 30’s, after which the gap in the survival probabilities closes 

between non-Hispanic Whites and non-Whites (Figure 2). The estimated probability of obesity 

by age 33 is 0.51 for non-Hispanic Whites and 0.49 for non-Whites, respectively. Males and 

females exhibit similar survival curves during adolescences and early adulthoods. The 

estimated probability of obesity by age 33 is 0.47 for both males and females. 
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Figure 1. Survival curve of all the respondents 

 

 

Figure 2. Survival curve by race/ethnicity 

 



14 of 22 
 

 

Figure 3. Survival curve by gender 

 

The regression analysis results are presented in Table 2 for the three models: unadjusted model, 

random effect model, and mixture distribution model.   
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Table 2.  Survival analysis results 

  
Unadjusted model  

  
Random effect model  

  
Mixture distribution model 

(LIFEREG procedure) (NLMIXED procedure) (NLMIXED procedure) 

  Coefficient 
estimate (SE) Pr(Z>|z|)   Coefficient 

estimate (SE) Pr(Z>|z|)   Coefficient 
estimate (SE) Pr(Z>|z|) 

Weibull            
  Intercept 3.533 0.0189 <.001  3.569 0.0258 <.001  3.278 0.0098 <.001 
  White 0.148 0.0196 <.001  0.105 0.0303 <.001  0.063 0.0121 <.001 
  Males 0.109 0.0162 <.001  0.063 0.0191 <.001  -0.130 0.0087 <.001 
  Interaction -0.116 0.0192 <.001  -0.087 0.0249 <.001  -0.032 0.0162 0.048 

            
Bernoulli            
  Intercept -    -    0.971 0.0195 <.001 
  White -    -    -0.390 0.0231 <.001 
  Males -    -    -1.013 0.0269 <.001 
  Interaction -    -    0.396 0.0271 <.001 

            
Scale 0.447 0.0091   0.43 0.0093   0.356 0.0100  
Theta -       0.012      0.016    
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Results from the Unadjusted Model 

The estimated average time to obesity obtained through the unadjusted model is 34.2 years (i.e., 

)533.3exp( ) among non-White females. It is 16.0% (i.e., }1)148.0{exp(100 −× ) longer among 

non-Hispanic White females and 11.5% (i.e., }1)109.0{exp(100 −× ) longer among non-White 

males than among non-White females. Overall, non-Hispanic White males have an average 

time to obesity 15.1% longer than non-White females. These coefficients are significantly 

different from 0 at the two-side α level of .05, based on the standard errors obtained through 

LIFEREG procedure. The corresponding hazard of obesity is 72 % (of the hazard for non-White 

females) for non-Hispanic White females; and 78 % (of the hazard for non-White females) for 

non-White males is 78 %, and 73 % (of the hazard for non-White females) for non-Hispanic 

White males.  

Results from the Random Effect Model 

The estimated average time to obesity obtained through the random effect model is 35.5 years 

(i.e., )569.3exp( ) among non-White females, which is slightly larger compared with the 

unadjusted model. The estimates of the other regression coefficients are closer to the null 

compared with the unadjusted model, suggesting that the coefficients are overestimated in the 

unadjusted model as a result of ignoring informative sampling weights. The differences, 

however, are relatively small and do not change the conclusions as to the association between 

the studied socio-demographic factors and time to obesity. The standard errors obtained 

through a Jackknife procedure are larger compared with the unadjusted model, suggesting that 

the unadjusted model underestimates the parameter variances by ignoring clustering and 

informative sampling weights.  

Results from the Mixture Distribution Model 

On the other hand, the results of the mixture distribution model are distinct from the previous 

two models. The estimated time to obesity among non-White females at risk for obesity is 26.5 

years (i.e., )278.3exp( ), which is shorter than the previous two models. The difference in time to 

obesity between non-Hispanic Whites and non-Whites at risk for obesity is also smaller 

compared with the other two models. The study conclusion as to the association between 

gender and time to obesity is reversed, given the negative coefficient estimate of -0.130; the 

average time to obesity is 12.2% shorter among non-White males than among non-White 
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females at risk for obesity. Overall, the average time to obesity is 9.4% shorter among non-

Hispanic White males at risk than among other non-White females at risk. 

At the same time, the results suggest that there may be a subpopulation not at risk for obesity 

and that non-Hispanic Whites and males have lower risk for obesity, compared with non-Whites 

and females, respectively. The estimated probability of obesity among non-Hispanic White 

females is 0.641 (i.e., )}390.0971.0exp(1/{11 −+− ), while that among non-White females is 

0.725 (i.e., )}971.0exp(1/{11 +− ). Likewise, the estimated probability of obesity among non-

White males is 0.490 (i.e., )}013.1971.0exp(1/{11 −+− ). Overall, non-Hispanic White males 

have a probability of 0.491 (i.e., )}396.0013.1391.0971.0exp(1/{11 +−−+− ).  

Summary 

We confirm that the magnitude of regression coefficients can be biased when informative 

sampling design is not accounted for. Also the variances are underestimated when clustering is 

ignored. We also confirm that the covariates (i.e., socio-demographic factors) may exhibit a 

different association with time to obesity and the probability of obesity. When the two different 

subpopulations, one at risk and the other not at risk for obesity, are not addressed in a model, 

the regression coefficients may be biased and mask the true association between covariates 

and time to obesity.  

5. DISCUSSION 

 

Survival analysis may face methodological challenges when analyzing complex survey data: 

clustered data with informative sampling weights, interval-censored event times, and an 

unknown subpopulation not at risk. This study addresses the three challenges by extending the 

PML method to a random effect, mixture distribution model within the framework of AFT model. 

First, the likelihood function accounted for interval-censored event times. Second, based on the 

assumption that the study design is informative at the school level, we introduced weights at the 

school and individual levels to the likelihood function. At the same time, a frailty term was 

incorporated to account for clustering. Third, a mixture distribution model was introduced to 

account for an unknown subpopulation not at risk for obesity. This study therefore presents a 

statistical approach to eliminating bias due to multistage, informative sampling designs, an 

unknown subpopulation not at risk using, and multiple types of censoring.  
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The study results confirm that a model failing to address the problems may produce biased 

estimates of parameters. It is therefore critical to apply a method that best addresses the 

sampling design and characteristics of the study population. Specifically, the magnitude of 

regression coefficients can be biased when informative sampling design is not accounted for. 

Also the variances are underestimated when clustering is ignored. The bias due to informative 

sampling design and clustering in this study is not as large as to reverse the study conclusions. 

The unadjusted model and the random effect model assuming risk for obesity for the entire 

population identify non-Whites and females as having a shorter time to obesity.  

 

On the other hand, the mixture distribution model provides different conclusions especially as to 

the association of covariates with time to obesity and probability of obesity. Non-Hispanic White 

adolescents are found to have a longer time to obesity and lower risk for obesity compared with 

their non-White counterparts. On the other hand, males have a shorter time to obesity when at 

risk for obesity but have lower risk for obesity compared with females. They may imply that 

there are more females than males at risk for obesity, but males at risk for obesity are likely to 

become obese earlier than females at risk. When the two different subpopulations, one at risk 

and the other not at risk for obesity, are not addressed in a model, the regression coefficients 

may be biased and mask the true association between covariates and time to obesity. The 

study results therefore suggest that further research is required to address time to event and 

probability of event separately. 

 

This study has several limitations. First, the anthropometric information collected at wave I is 

based on self-reporting, unlike that at waves II, III, and IV, which is measured by trained 

interviewers. Therefore it is possible that the anthropometric information at wave I contains 

measurement error. To examine measurement error of self-reported weight and weight among 

adolescents and its impact on study results, Goodman et al. (2000) compare obesity status 

between waves I and II, using the Add Health data. They conclude that 96% of respondents are 

correctly classified as to obesity status when self-reported weight and height are used to 

calculate BMI. Because they assess the same data used in this study, their conclusion may be 

generalized to this study, suggesting that the impact of measurement error on the study results 

may be minimal, if any at all. 

 

Second, the probability estimation is available only for Turnbull intervals. While the estimation 

method is well suited for the Add Health data because the respondents were observed in 
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overlapping intervals, the method may not be applicable to other data if the intervals are fixed or 

non-overlapping. Therefore, exploration of data and careful application of the method is required. 

 

Future Work 
 
Further work is planned and will be included in the final draft of this paper to be uploaded on the 

PAA 2012 website by April 2, 2012.  

 

First, we plan to refine the mixture distribution model. In this preliminary report, we assumed 

that both gender and race/ethnicity are associated with both time to obesity and risk for obesity. 

However, it is possible that different sets of covariates may be associated with the two 

outcomes. Future work therefore includes exploration and selection of covariates into the 

different components of distributions, i.e., Weibull and Bernoulli distributions, through AIC and 

BIC.  

 

Second, we plan to estimate parameter variances through bootstrapping. In this preliminary 

report, we used a Jackknife procedure to estimate parameter variances because the ideal 

robust sandwich estimator is computationally intense to obtain in the multilevel models. 

However, the procedure is known not to be optimal; in addition, performance of Jackknife 

estimates in presence of informative sampling designs is not well studied (Grilli and  Pratesi 

2004). Given the concern, Grilli and Pratesi (2004) recommend estimation through 

bootstrapping to obtain the variance covariance matrix. Future work therefore includes 

estimation of variances through bootstrapping. 
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